build your project on the rock

Summary

m 3.3.2 STAR Case - Design System Drift
m 3.3.3 STAR - Inconsistent State Pr tion

m 4.3.1 STAR Case - Multi Squad Conflicts Under Tight Deadline

m 4.3.2 STAR Case - Inconsistent Ul Across Teams

e 5 BB |tad

o 5.1 & Project Treemap

m 5.3.1 STAR -N mpliance with WCAG Standar

m 6.3.1 STAR Case - Fragmented Research Environment

e 7 Virtual

7.3.1 STAR -

#* Professional Summary

A journey of a thousand miles begins with a single step

My PC from 2007

With this PC, | took my first steps building sites with Adobe Flash and PHP, a combo long gone,
but one that set me on the developer path | plan to walk for as long as | can.

This is where this path has brought me so far. For more details, check the) Project Case
Studies.

Sector Company Stack / Role Duration

Startup Neurogram React Web Nov 2023 - Nov
2024

Startup XTeam React Native Sep 2022 - Jul 2023

Retail Riachuelo React Native Aug 2020 - Aug
2022

Banking Safra Angular]S Jun 2019 - Aug 2020

Banking Itad Angular 2+ Mar 2018 - Jun 2019

Academia UEPG Java Mar 2015 - Aug
2017

Insurance Virtual Delphi / MEAN May 2013 - Mar
2015

Self-Employed Freelance Software and hardware technician 2004 - 2008

@ Career Objective

I’'m seeking a role in an environment that embraces transparency and communication, where
clear processes and collaboration can bring out the best in my professional values and
skills.

My goal is to join or help a team become high-performing, deliver an unforgettable
developer and user experience, and improve the quality of life for both the team and the
end users.

[T} Professional Values

Through my previous roles, I've learned values that go beyond the code, values that support
the team from concept to release. These are the values | bring to every team | join.

Transparency and communication

This is my top priority. | make sure the team knows when a task will be done, how we plan to
develop it, and why we approach it that way.

If we can’t deliver on time, the next step is to discuss openly what can be done within the
time we have.

Delaying bad news, keeping a task “almost done” for weeks, or omitting the release date
are just ways of avoiding accountability. That is why we commit to transparency, because
when we share issues early, we gain room to react and adapt together.

__ Process

Every development team has a process, even if it is ‘Go Horse’, it is still a process.

We seek to understand how the process works, document it clearly, and improve it step by
step.

This is the core of Agile practice: building predictability and achieving sustainable delivery

over time.

© User impact first

Frontend codebases “die” on average in 5 years through rewrites, framework shifts, or
redesigns.
Backend codebases last on average 10 years before major replacement or replatforming.

But a lost user is lost forever.

New features, analytics, redesigns, and refactorings mean nothing if the user is gone.
That is why we prioritize user impact above all, making sure every decision serves what is
best for the final user.

12y Ownership mindset

| treat the software as if | am the owner.
That means caring about quality, stability, and user experience, not just moving tasks to
“done.”

After years of dealing with bad code, | feel responsible for long-term maintainability and for
always leaving the codebase better than | found it.

@ Healthy code

If you don’t take time to maintain the code, the code will take the time for you.
Maintenance is always required.

To save maintenance costs, | write clean, structured code from the start.

When that is not possible, | refactor bad patterns, improve readability, and simplify
structures.

Sometimes a codebase needs significant maintenance, and the only safe way is for the team
to acknowledge it and schedule time for it.

%5 Resilient code

Healthy code is not always resilient.
A codebase can be clean and organized, yet still collapse at runtime under unexpected

cases or heavy load.

A mindful developer considers the code, the hardware, the environment, the data flow, and

system behavior under pressure.

That is why | code for the worst case: catching exceptions, validating input data, creating
fallbacks instead of assuming the happy path, and logging external processes.

iZdl Personal Interests

My interest in high quality code goes beyond work and deep into my personal interests. But | also

have others, here is a list:

* Blogging: This is an old blog from 2013, now archived. | made several blogs over the years

and plan to consolidate all of them soon.
* Photography: A personal hobby | keep improving over time.

* Music: I’'m no musician, but | try to play some instruments. My favorite genres are hard rock
and 2000s techno.

* Game modding: | love writing code for game mods and recently started publishing them.
Here’s my collection for Project Zomboid check it out.

Nature: The only reasons | ever leave home are to buy groceries, or stay in parks and
campgrounds. | feel at peace being in nature, listening to the symphony of bugs and birds.

https://web.archive.org/web/20130302224351/http://jonathanribas.com/
https://git.ribas89.co.uk/ribsorg/project-zomboid-ribs-mods

2) Project Case Studies

My career objective has been shaped by every project I've worked on.
Here is how | contributed to each of them, presented using the STAR (Situation, Task, Action,
Result) approach.

- Neurogram

Senior Frontend Engineer - React.js 7 Nov 2023 - Nov 2024

Linked Tests

NEUROGRAM
Edna Willlams
A ICU Tests
Luciano s
L Edf info 24h 3/08 EE
David Brooks 7/06 {dd<)

Created Tests

William Johnson

wiilliam Johnson

Emily Taylor

Elizabeth Hall 1

teste le iz

HYPNOS —

Click or Drop the files

@

Previous Uploads

Q Whet aro youlooking for?

' o Qe

Required Files:

© One odf e
© One.rmifile
© One-T.odl fle

SCHFDULFD

SCHEDULED

SCHEDULED

SCHEDULED

E A ¢ 0
A ¢ 9
aé o0
E A ¢ 0

A A A A

NEUROGRAM

GENERAL INFO

&«

Fill in your personal information

CP

EEGs Not Linked

14.42.15.edt

07.24.53.edf

14.02.27.0df

18.14.45 ed1

18.18.17.cdf

08.18.17.cdf

08.18.17.edf

Neurogram Header

F

Full name

Jhon doe

u a E-mail

o] =] ce

liphone

Birthdate

|
Muvenoe

Revolutionizing
Sleep
Diagnosis

Developed in
partnership with
the world’s largest
sleep hospital

Security

(8]

support

yyyy-mm-dd

jm}

Artificial Intelligence
in service of
sleep diagnosis

Project Treemap

r

llib— lprcj—
B8589 B = (32725
lccmpcn&nts (72.7 %) lscre&ns (94,5 %)
l s0 (81.0 %

F— e

.component? (6é.4 %) . [3 Files...
LA A R R B ..O.. TI IR AM
L B B ’

- 00
! t.ooo

teees boo ke

lcomponentr 97.7'%)

B hooks (16.6 %) J tokens (4.4 %)
. .
lprc riders (2.2 %) .[6 Files] (1.9 %)

. crypto (1.3 %) l msw (0....
B B
B (82299 Bsc@Eeze
lscreens (76.1 %) lcomponent... lscreens (56.6 %) lcomponents.,.
- . » - - . »
- : 5 5 9
.
. .

W (17 Files] |(37.7/55)
R
B (12 Files] (. ISFC (8156155)
lccmpcn... . m z
1

B [SFile.
lccmpcnentfl:.’.:% SCree

l:crecns (37.5 %) . [-

.nominify
Neurogram Treemap

« Backend and Cloud: Firebase

* Build Configuration: Install, NPM, Vite, Vite Plugin JavaScript Obfuscator, Vite Plugin SVGR
Vite TSConfig Paths

* Charts and Visualization: Plotly JS, Plotly JS Basic Dist, Plotly JS Dist, React Minimal Pie Chart
React Plotly JS, Victory Native

» Component Library and Ul: Bootstrap, Framer Motion, React Draggable, React Zoom Pan
Pinch, React Device Detect, React Helmet Async, React Intersection Observer

* Crypto: Crypto ES, JSEncrypt

Data Fetching and Networking: Axios, Axios Retry, React Use WebSocket, Retry
* Date and Time: Day JS, Moment

* Documents and PDFs: React PDF Renderer, Canvas2lmage, HTML2Canvas, JSPDF, PDFJS Dist,
Quill To PDF, React PDF

* Encryption and Security: Crypto ES, JSEncrypt

* Forms and Validation: Hookform Resolvers, React Hook Form, Yup, Yup Locales

* Internationalization: Brazilian Utils, Get User Locale, I18Next, React I18Next, Yup Locales
* JavaScript Framework: React, React DOM

* Media and Players: React Player, Video React

* Mocking and Testing: Mirage JS, MSW, Jest, ESLint, ESLint Plugin React Hooks, ESLint Plugin
React Refresh, TypeScript ESLint Plugin, TypeScript ESLint Parser

* Routing: React Router DOM

» State Management: React Query

» Storage: LocalForage, LocalForage Session Storage Wrapper
* Styling and Normalization: Modern Normalize

* Text and Editors: Suneditor, Suneditor React

 Utilities: Buffer, Filt, Get User Locale, Lodash, Match Sorter, Randomatic, ShortID, Sort By,
Stream Browserify, UUID

* Visualization Enhancements: React Zoom Pan Pinch, React Draggable, Plotly JS, React Plotly
JS

* Web Platform: React DOM, React Native Web

STAR Cases

STAR Case - Fragmented codebase

Situation

The previous codebase combined Rails, React, Tailwind, GraphQL, and Docker across multiple
repositories with duplicated components and scattered configs. This fragmentation caused
long onboarding times, inconsistent standards, and clear signs of vendor lock-in.

Task

Considering the in-house team’s low seniority and the complexity of the project, | set out to
reshape the project’s stack, replacing dependency hell with an architecture that was simple,
maintainable, and sustainable, pursuing the following objectives:

1. Standardize tooling into a single, reliable workflow.
2. Accelerate onboarding so developers could focus on building instead of setup.
3. Align stack with team skills rather than forcing over-engineered solutions.

4. Prevent future rewrites by choosing technologies compatible with the existing backend.

Actions

My first step was to assess what could be salvaged from the frontend. After several attempts,
| confirmed that refactoring would be slower than starting fresh. Between Next.js and Vite,
the latter was chosen for its faster builds, simpler configuration, and better alignment with
the backend stack based on Firebase and Google Cloud Platform.

Instead of leaving developers to wrestle with separate Babel, PostCSS, Tailwind, and Docker
setups, | collapsed dependencies into one consistent Vite configuration. This dramatically
improved setup time and enabled features like obfuscation and vendor chunking by default.

Below is the build configuration file | introduced:

import react from "@vitejs/plugin-react";
import tsconfigPaths from "vite-tsconfig-paths";
import obfuscatorPlugin from "vite-plugin-javascript-obfuscator";

type buildConfigOptions = {
manualChunks?: boolean;
vendors?: string[];

};

export const buildConfig =
({ vendors, manualChunks }: buildConfigOptions = {}) =>
({ mode, command }) => {

const isProdBuild BN
const noMinify = ...;
const minify = ...;

const vendorPath = [
"jsencrypt",
Ili]-8nll’

Ilyupll)
"lodash",
Ildayjsll)

"lib-framework/src/fonts",
"lib-framework/src/icons",
"lib-framework/src/assets",
"lib-framework/src/hooks",
"lib-framework/src/tokens",
"lib-framework/src/components",
...(vendors || [1),

1;

const config = {

define: {
"process.env": {},

},

plugins: [
react(),
tsconfigPaths(),
obfuscatorPlugin({

apply: () => isProdBuild,

3,
1,
build: {
minify,
rollupOptions: {
treeshake: true,
output: {
manualChunks (id: any) {
if (!manualChunks) {

for (const vendor of vendorPath)

“

return ...;
},
},

}

return config;

};

Results

1. Build security improved: JavaScript obfuscation protected intellectual property and

reduced reverse-engineering risks.

2. Bundle performance optimized: vendor chunking and tree-shaking in the Vite
configuration reduced payload size and improved runtime efficiency.

3. Maintenance costs lowered: collapsing scattered configs into a single pipeline
simplified upkeep and reduced time wasted troubleshooting environment inconsistencies.

4. New projects bootstrapped quickly: standardized Vite setup enabled starting fresh
projects in minutes with all necessary configurations ready to use.

5. Onboarding accelerated: environment setup time dropped from 5 days to 5 minutes,
making it straightforward for developers of any seniority level to start coding
immediately.

6. Team focus regained: developers shifted attention back to delivering features instead
of resolving fragmented build and config issues.

STAR Case - Unreliable Deployments

Situation

The deployment pipeline was entirely controlled by the consultancy, including the production
and staging environments. Deployments were triggered automatically with every change,
but the maturity of the software and the team was not ready for such automation. As a result,
bugs were introduced directly into production, breaking the user experience and creating
unnecessary troubleshooting overhead for the team.

Task

Shift the ownership of the pipeline and environments back to the company, simplify the
deployment, and give full control to the in-house team. The objective was to design a fast,
easy, and manual deployment flow that would only run when a developer explicitly triggered
it, reducing accidental breakages in production.

Actions

| redesigned the deployment process using the minimum resources and complexity possible.
Since the company was part of the Google for Startups program, the infrastructure of choice
was Firebase. To make deployments simple and predictable, | created a GitHub Actions
workflow that consolidated all frontend projects one codebase. This ensured the process was
manual, quick, and transparent, while eliminating the hidden consultancy-owned pipelines.

Below is the GitHub Action | authored to handle all frontend projects in one place:

name: manual deploy

on:
workflow dispatch:
inputs:
project-name:
type: choice

build-type:
type: choice

env:

run-name: ${{ inputs.build-type }} TO ${{ inputs.project-name }} AT $
{{ github.event.repository.pushed at }} WITH ${{ github.sha }}

jobs:
deploy firebase:

runs-on: ubuntu-latest

defaults:
run:

working-directory: ${{ github.workspace }}/proj-${{inputs.project-
name}}/

steps:

- name: Deploy
run: |

curl -sL https://firebase.tools | bash

firebase deploy --only hosting:target-${{inputs.project-name}} --
token ... --project=project-${{inputs.project-name}}-DEV --config="../
lib-framework/firebase.json"

Results

1. Auditable and predictable deployments: GitHub Actions provided structured logs and
version traceability, ensuring every release could be tracked and verified.

2. Full control of environments: staging and production ownership returned to the in-
house team, preventing external bottlenecks and restoring confidence in releases.

3. Independence from external vendors: embedding the deployment pipeline internally
removed reliance on opaque consultancy infrastructure and secured long-term

ownership.

4. Production incidents virtually eliminated: replacing consultancy-controlled auto-
deploys with manual GitHub Actions workflows reduced the risk of pushing unstable
code directly into production.

5. Simplified release governance: a single reusable workflow handled all frontend
projects, reducing coordination overhead and increasing team-wide transparency.

6. Streamlined deployment process: releases became a two-click manual action,
intentionally designed to be easy and reliable for any seniority level on the team.

STAR Case - Code duplication

Situation

Multiple projects implemented the same logic for API calls, encryption, i18n, and Ul
components. This led to frequent code duplication, inconsistencies between projects, and bugs
caused by drift in how core features were handled.

Task

Eliminate duplicated logic by creating a single framework that standardized core features
and could be reused across all projects. The goal was to ensure consistency, reduce
maintenance overhead, and accelerate new project setups.

Actions

| authored a centralized internal library-framework that included:

1. A custom axios layer with interceptors and typed adapters.

2. A unified crypto module using a hybrid combination of RSA and AES.

3. Mock Service Worker patterns and mock data for consistent testing and development.

4. Preconfigured project templates and setup files to enable fast project creation. 5. Providers
for Firebase, context, i18n, overlay, and query handling.

6. Reusable Ul components and design tokens.

>
'
> .github
> .vscode
v lib-framework
> node_modules

v public

mock-service-work...

“a vitesvg
v sic
> assets
> axios
v components
> dsO
> ds1
v crypto
2 front.tsx
¢ hybrid.tsx
2 index.tsx
> fonts
> hooks
> i18n
> icons
> msw
v providers
> context
> firebase
> http
> i18n
> overlay
> query
% index.tsx
v tokens
v dsO
> colors
b index.tsx
o types.tsx
> dsi

Results

lib-framework > src > providers > % index.tsx > ...

1

O e N W» B WN

NRNNRNNRNNRNNRNRRRS[2 |2 |2 |2 |2 |3 $2
W oSN WA WNIERER®WOHNO VR WNR®

w

w w w w w
vi bW N

w

HE A S W W W
W N R O® O 0N

import { FrameworkProviderContext } from "./context";

import { FrameworkProviderFirebase } from "./firebase";

import { FrameworkProviderHttp, FrameworkProviderHttpProps } from "./http";
import { FrameworkI18nProvider } from "./i18n";

import { FrameworkProviderOverlay } from "./overlay”;

import { FrameworkProviderQuery } from "./query";

export * from “./context";
export * from "./il8n";
export * from “./http";
export * from “./firebase";

export const Providers = {
Context: FrameworkProviderContext,
I18n: FrameworkI18nProvider,
Http: FrameworkProviderHttp,
Firebase: FrameworkProviderFirebase,
Overlay: FrameworkProviderOverlay,
Query: FrameworkProviderQuery,

};

export type AllProvidersProps = {
httpProps: FrameworkProviderHttpProps;

};

export const AllProviders: React.FC<AllProvidersProps & { children: React.ReactNode }> = ({
httpProps,
children,
1) = {
return (
<Providers.Context>
<Providers.I18n>
<Providers.Query>
<Providers.Http {...httpProps}>
<Providers.Firebase>
<Providers.Overlay>{children}</Providers.Overlay>
</Providers.Firebase>
</Providers.Http>
</Providers.Query>
</Providers.I18n>
</Providers.Context>
)5
1

Lib Framework Providers

1. Bug rates reduced: redundant and inconsistent duplicate logic was eliminated,

reducing maintenance issues.

2. Core features by default: i18n, crypto, HTTP, and mocks were included by default in

every project.

3. New projects scaffolded in minutes: a complete baseline setup was instantly available

for new development.

4. Single source of truth: centralized frontend architecture improved maintainability and

increased team productivity.

¢ X-Team

Senior Frontend Engineer - React Native 7' Sep 2022 - Jul 2023

S xream CD=

Trusted by Scan or search Know the fair
8+ million wine any wine price to pay
enthusiasts.

Featured in

THE WALL STREET JOURNAL.
FINANCIAL TIMES
4 -CNBC

Community Value

GRAND VIN
CHATEAU LATOUf

Auction Value

In My Cellar

@ Add Botties
(6) Search Label

[Z) Review Wine 3 Print Wine List

Recent Wines

Track your Read millions of Discover new wines
wines tasting notes and producers

< InCellar o) Activity

CellarTracker Header

Project Treemap
4

l screens (57.6 %)

I utils (10.7 %)

. l usernameGenerator (67,0195

B ViyCellzr (224 95 B 2 Files] (.

"eH
280 B Fitter (59.1 %) BGrou.. o+

ducks (3.1 %) s (2.7 %) . [21 Files] (2.7 % l navigation (2.2 %)

)
ol

.prettierigno... § .watchmanc...j .nvmrc JPrEtEns

CellarTracker Treemap

Tech Stack

* Analytics: Mixpanel React Native
* Animations: Moti, Motify Interactions, React Native Reanimated
* Assets Files: Expo Asset, React Native Dynamic App Icon

* Auth: Expo Apple Authentication, Expo Auth Session, Expo Local Authentication

* Build Configuration: Copy Files From To, Expo Build Properties, Expo Dev Client, Patch
Package, Postinstall Postinstall

* Camera: Expo Camera

* Charts: React Native Chart Kit, Victory Native

* Clipboard: React Native Clipboard

* Config Plugins: Config Plugins Detox, Config Plugins Dynamic App Icon
* Crypto: Expo Crypto

* Data: Apisauce, Axios Auth Refresh, Deepmerge, QS

* Dates: Date Fns

* Deployment: Expo Updates

* Device: Expo Application, Expo Constants, Expo Device, Expo Linear Gradient, Expo Linking,
Expo Location, Expo Mail Composer, Expo Notifications, Expo Random, Expo Splash Screen,
Expo Status Bar, Expo System Ul, Expo Web Browser

Feature Flags: Flagged

* Fonts Icons: Expo Fonts, Expo Google Fonts Arbutus Slab, Expo Google Fonts Inter, Expo
Vector Icons, React Native Vector Icons

* Forms Validation: Formik, Hookform Resolvers, React Hook Form, React Native Formik, Yup
* Images: Expo Image, Expo Image Manipulator, Expo Image Picker

* Internationalization: Expo Localization, FormatJS Intl DateTimeFormat, Format]S Intl
GetCanonicallLocales, FormatJS Intl Locale, Format)S Intl NumberFormat, Format)S Intl
PluralRules, Intl, React Intl

* JavaScript Framework: Expo, React, React Native

* Markup Parsing: BBob Plugin Helper, BBob Preset, BBob React, React Native Render HTML
* Media: Expo AV, Expo Barcode Scanner, Expo Media Library

* Monitoring: Reactotron React Native, Reactotron Redux, Redux Logger

* Navigation: React Navigation Bottom Sheet, React Navigation Bottom Tabs, React Navigation
Drawer, React Navigation Elements, React Navigation Material Top Tabs, React Navigation
Native, React Navigation Native Stack, React Navigation Stack

* Performance: Shopify FlashList

» Search: Diacritics, Fuse JS

* State Management: React Redux, Redux Persist, Redux Toolkit
* Storage: React Native Async Storage

* Styling: Gorhom Bottom Sheet, React Native Calendars, React Native Keyboard Aware Scroll
View, React Native Masked View, React Native Multi Slider, React Native Pager View, React

Native Paper, React Native Paper Dropdown, React Native Safe Area Context, React Native
Screens, React Native Segmented Control, React Native Tab View

» Testing: Detox, Detox Recorder, Jest, Jest Expo, React Native Testing Library, React Test
Renderer, Testing Library Jest DOM, Testing Library Jest Native, Testing Library React, Testing
Library React Native, TS Jest

* TypeScript Linting: ESLint, ESLint Config Prettier, ESLint Plugin FormatJS, ESLint Plugin
Prettier, TypeScript

* Web: React DOM, React Native Web

STAR Cases

STAR Case - Performance Bottleneck

Situation

Before my involvement, the app was built only with a dozen hard-coded entries. This limited
dataset masked scalability issues in the fetching and rendering logic. After | integrated the
backend, the app received thousands of real bottle registries, and the existing
implementation could not handle this scale, causing the app to freeze during feching, filtering,
grouping, and searching.

Task

Re-architect how the app handled large-scale data to:

1. Build a modular and maintainable architecture for data and Ul.
2. Enhance user experience with smooth navigation and search.
3. Ensure accurate results across all features.

4. Support thousands of records without freezing.

Actions

First | needed to guarantee the data was loaded quickly and accurately. For that | reviewed
how the app was fetching and storing information and found deeply nested loops,
duplicated logic and recalculations on every action. To reorganize the data fetching and
storage flow, | created consistent patterns for how records were requested, saved and
displayed. | also introduced a preloading logic that ensured data was available before the Ul
rendered. This eliminated unnecessary reload cycles and gave users a faster and smoother
experience from cold boot.

After that | addressed the Ul data rendering code. Many filtering and sorting elements were
duplicated and inconsistent so | refactored them into reusable components which made
the interface easier to maintain and extend. To improve the experience of browsing large

inventories | introduced sectioned lists and infinite scroll which reduced rendering cost and
gave users a smooth and responsive navigation.

Below is one of the optimizations | introduced to the selectors.

export const selectCustomFilters = (...) => {

return {

- locations: [

- ...new Set(

- cellar

- .map(i => {

- if (i.Holdings) {

- return i.Holdings.map(holding => {
- if (holding.Locations) {

- return holding?.Locations.map(k => {
- return k.Location;

- 1)

- } else {

- return;

- }

- }).flat();

- }

- return;

- })

- .flat()

- .filter(i => typeof i === 'string'),

const FilterPendingDataArray = (inCellarWines: InCellarWinePending[]) => {
const resultData = {} as FilterObject<PendingFilters>;

inCellarWines?.forEach?. (wine => {
const hasBottles = wine?.Purchases?.some?.(p => !!p?.Quantity);

if ('hasBottles) return;

addNewFilterDataltem(resultData, 'appellation', wine?.Appellation);

+ + + + + + + + + o+

+ wine?.Purchases?.forEach(p => {

+ if (!'p?.Quantity) return;

+ addNewFilterDataltem(resultData, 'bottleSize', p?.Size);

+ });

+ 1)

+

+ const { appellation, bottleSize, country, masterVarietal, region,
subRegion, type } = resultData;

+ [appellation, bottleSize, country, masterVarietal, region, subRegion,
typel].forEach(a => a?.sort?.(sortStringAsc));

+

+ const { vintage } = resultData;

+ [vintage].forEach(a => a?.sort?.(sortNumberAsc));

+

+ return resultData;

e

Results

1. Better user experience: responsive infinite scrolling and grouped lists improved
navigation.

2. Fast search and filtering: thousands of entries could be queried without performance loss.
3. Higher developer productivity: reusable, modular Ul components reduced duplication.
4. Scalable architecture: a foundation that supported new features and long-term growth.

5. Smooth performance: large datasets became responsive and near-instant to operate on.

STAR Case - Unstructured Backend Responses

Situation

After we managed to consistently recover thousands of entries across the app, the next
challenge was the lack of a proper model to organize, sort, and feed data into the Ul. The
core issue was the same as before: the data model was partially incorrect and hardcoded.
In addition, the backend did not provide a reliable way to validate its payloads, and in many
cases critical fields were missing.

Task

Create a reliable way to handle the app’s deeply nested and inconsistent backend data in order
to:

1. Enable users to quickly find and browse bottles with accurate results.

2. Ensure the model could scale to thousands of entries without breaking.

3. Establish a consistent foundation for filtering and search.
4. Resolve issues caused by missing and unreliable fields.

Actions

To solve this | restructured the data handling into a graph-structured traversal model where
each level of information (bottles, holdings, locations, bins) was treated as a connected node.
This approach created a navigable structure where starting from a node like a location you
could immediately find the bottles stored there and from those bottles trace back to their
vintage or other attributes. This replaced scattered nested loops with a clear and
predictable flow, making the model easier to maintain, extend, and scale.

This graph approach gave three major advantages:

1. Consistency: the same traversal logic powered cellar, pending, and consumed states,
removing duplication and errors.

2. Extensibility: adding a new filter meant only extending traversal rules for a node, not rewriting
entire loops.

3. Traversal clarity: instead of nested loops, each level of the data (wine - holding — location —»
bin) contributed in an organized way.

) utils > MyCellar > TS indexts > ...
v utils 1 import MyCellarFilterBottlesLength from './Filter/FilterBottles';
v MyCellar 2 import FilterCellarData from './Filter/FilterCellar/data’;
~ Filter 3 import FilterCellarDataArray from './Filter/FilterCellar/dataArray’;
v FilterCellar 4 import FilterCellar from './Filter/FilterCellar/filter’;
TS datats 5 import FilterConsumedData from './Filter/FilterConsumed/data’;
T8 dataAmavis 6 import FilterConsumedDataArray from './Filter/FilterConsumed/dataArray’;
v 7 import FilterConsumed from './Filter/FilterConsumed/filter’;
TS filter.ts 8 import FilterPendingData from './Filter/FilterPending/data’;
v FilterConsumed 9 import FilterPending from './Filter/FilterPending/filter’;
TS datats 18 import FilterPendingDataArray from './Filter/FilterPending/dataArray’;
TS dataArray.ts 11 import MyCellarDefaultFuse from './Fuse/FuseDefault’;
TS filter.ts 12 import MyCellarGroupCellar from './Group/GroupCellar’;
> FilterPending 13 %mpor‘t MyCellar‘Gr‘oupConSL-Jmed fr‘om' ! ./Gr‘oup/Gr‘oupCon?um?d';
) 14 import MyCellarGroupPending from './Group/GroupPending’;
TS FilterBottles.ts 15
TS shared.ts 16 const myCellarUtils = {
TS types.ts 17 cellar: {
v Fuse 18 fuse: MyCellarDefaultFuse,
TS FuseDefault.ts 19 filter: FilterCellar,
20 filterData: FilterCellarData,
v Group i X
. I 21 filterDataArray: FilterCellarDataArray,
Y
13085 2 22 group: MyCellarGroupCellar,
TS index.ts 23 1,
v GroupConsumed 24 pending: {
TS index.ts 25 fuse: MyCellarDefaultFuse,
v GroupPending 26 filter: FilterPending,
TS indexts 27 f%lter‘Data: F11ter‘|'>end1ngDa1.:a,
28 filterDataArray: FilterPendingDataArray,
TS defaultGroups.ts :
o 29 group: MyCellarGroupPending,
TS sectionlistRemod...
30 }s
TS typests 31 consumed: {
v shared 32 fuse: MyCellarDefaultFuse,
TS indexts 33 filter: FilterConsumed,
34 group: MyCellarGroupConsumed,
35 filterData: FilterConsumedData,
36 filterDataArray: FilterConsumedDataArray,
37 I
38 filterBottlesLength: MyCellarFilterBottleslLength,
39 I3
498
41 export default myCellarUtils;

Transversal graph model

Results

1. Extensible filters: new filter types were added without breaking existing functionality.

2. Faster and accurate search: browsing and filtering across thousands of entries became
smooth and responsive.

3. Maintainable data model: a graph-inspired approach organized unstructured responses
into a predictable system.

4. Reliable filtering: users could apply filters consistently even when backend data was
incomplete.

STAR Case - Missing Internationalization

Situation

The app serves a global audience of wine collectors who expect multiple language support.
While there were some early attempts at internationalization, the application was
inconsistent and incomplete. Many components still relied on hardcoded English strings for
filters, chips, dropdowns, and error messages. This incomplete approach made the Ul feel
disjointed and awkward, blocking full localization and limiting the app’s ability to deliver a
scalable, accessible international experience.

Task

Establish a consistent internationalization pattern to:

1. Create a scalable i18n foundation that developers could apply uniformly across the app.
2. Ensure Ul elements like filters, chips, and dialogs were fully translation-ready.

3. Fix prior inconsistencies and enable a seamless multilingual experience for end users.
4. Replace remaining hardcoded strings with localized messages.

Actions

| refactored the application to use a consistent internationalization pattern, replacing static
strings with translated messages across components. To simplify adoption, | created hooks to
make it easy to pull translations into any new component.

Below is the hook | introduced, which encapsulated the logic for pulling translation messages,
formatting them with react-intl, and wiring them into navigation flows. This removed
duplication and made internationalization extensible across filters, chips, bottom sheets, and
dropdowns:

import {useNavigation, useRoute} from '@react-navigation/native';
import {useIntl} from 'react-intl';
import {useEffect, useRef} from 'react';

const useEventActionSheet = ({messages, title, params, onSelect}) => {
const route = useRoute();
const {formatMessage} = uselntl();
const navigation = useNavigation();

useEffect(() => {...}, [route?.params]);

() =>{
Object.keys(messages) .map(key => {

const openSheet

const options

const message = messages|[key];
return {
label: formatMessage(message),

value: message.value,
i
});

navigation.navigate('EventActionSheet', {...});

¥

return [openSheet];

};

export default useEventActionSheet;

Results
1. Broader international reach: multilingual support prepared the app to serve a global user
base effectively.

2. Consistent user interface: standardized messaging eliminated awkward or disjointed Ul
patterns.

3. Faster development workflows: developers could add new components with built-in i18n
support and less duplication.

4. Scalable i18n foundation: reusable hooks centralized logic and ensured consistent
adoption across the app.

5. Translation-ready Ul: all hardcoded strings were removed and replaced with localized
messages.

it Riachuelo

Senior Frontend Engineer - React Native ‘7 Aug 2020 - Aug 2022

RCHLO ¥

RIACHUELO

SIMPLIFICA

Uma maneira objetiva de

re:

or problemas

do dia a dia

< Workflow

@ Nayara Freitas

Solicitacoes (10)*

R$ 184,00

SIMPLIFICA
Fast Canais de Alterar
Tracking Atendimento Senha
Atestado
Workflow Férias Médico

Abra sua ¢
na Midwa

Mais um canal para

se conectar com

a Riachuelo vocé esta a ape
v de ter sua conti

< Solicitagao #2463926
.

DANILO A FERREIRA

R$ 184,00 Anexos (3)
Detalhes da solicitacao v
Rot]

@ Rejeitado Mauro Gongalves
@ Aprovado Renato Guedes

Simplifica Header

SIMPLIFICA

< Fast Tracking

Dificuldade encontrada:
Minha entrega esta atrasada

< Atestado médico

@ Toque para anexar

Project Treemap

]
l src)
B screens (39,199 B util= (2845
. .
.

l code-push (5.4 %)

Ptheme..

Simplifica Treemap

== Tech Stack
* Analytics: React Native Firebase Analytics

* Animations: Lottie React Native, React Native Collapsible, React Native Modal, React Native
Modal Datetime Picker, React Native Switch Toggle

¢ Authentication: React Native OTP Framework, RN Local Authentication, RN SMS Retriever

* Build Configuration: Babel Plugin Root Import, Metro React Native Babel Preset, React Native
Config

* Camera: React Native Camera

* Charts: React Native SVG Charts

* Crypto: Crypto ES, JSEncrypt

* Data: Axios, Axios Cache Adapter, Axios Retry, Cheerio

* Dates: Day JS, React Native DateTimePicker

* Deployment: App Center Code Push, React Native Code Push
e Device: React Native Device Info, React Native Version Number

e Documents and Files: React Native Blob Util, React Native Document Picker, React Native
File Viewer, React Native PDF, React Native Share

* Encryption: React Native Sensitive Info

* Forms Validation: Hookform Resolvers, React Hook Form, Yup, Yup Locale PT
* Internationalization: Brazilian Utils

» JavaScript Framework: React, React Native

* Media: React Native Image Pan Zoom, React Native Image Picker, React Native Image Slider
Box, React Native SVG, React Native SVG Transformer

* Monitoring: Reactotron React Native, Reactotron Redux

* Navigation: React Navigation Native, React Navigation Native Stack
* Permissions: React Native Permissions

* Pickers Ul: React Native Picker, React Native Picker Module

* State Management: Redux Thunk, Redux Toolkit

* Storage: React Native Async Storage

* Styling: React Native Keyboard Aware Scroll View, React Native Lottie Splash Screen, React
Native Ratings, React Native Safe Area Context, React Native Screens, React Native String
Style

» Testing: React Test Renderer

* TypeScript Linting: ESLint, React Native ESLint Config, TypeScript, TypeScript ESLint Parser,
TypeScript ESLint Plugin

 Utilities: Day JS, Lodash, Randomatic

STAR Cases

STAR Case - Insecure Client-Server Communication

Situation

The company launched a security initiative requiring protection of confidential data on
rooted devices, emulators, and man in the middle attacks. It required to strengthen security
beyond HTTPS and ensure compliance without adding latency or disrupting the user
experience.

Task

Implement an additional security mechanism to protect data exchanged between React
Native and Java endpoints. Ensure key management, payload encryption, and compatibility
with existing systems.

Actions

Instead of relying solely on HTTPS, | implemented an RSA + AES model, where each request was
encrypted and decrypted on both React Native client and Java Server.

On the frontend, | created a TypeScript module that generated AES keys per session, encrypted
them with the public RSA key, and transparently handled encryption and decryption through Axios
interceptors.

On the backend, | developed a Java utility library to mirror this logic. It managed key
exchange, payload decryption, and response re-encryption, ensuring perfect alignment
between platforms.

Below is Axios interceptor to encrypt payloads, creating a transparent and reusable security
layer across the entire app.

import { AxiosRequestConfig, AxiosResponse } from 'axios';
import { ... } from '~/utils/crypto’;
import { ... } from '~/utils/env’';

import { Interceptor } from './types';
const onRequest = async (

config: Promise<AxiosRequestConfig>,
): Promise<AxiosRequestConfig> => {

const oldConfig = await config;

const { data: value } = oldConfig;

const publicKey = await ... ();
const newConfig = {
...oldConfig,
data: {
data: encrypt({
publicKey,
value,

.

},
};

return newConfig;

};

export const hybridEncryptInt: Interceptor = {
onRequest,

};

const onResponse = async (
response: Promise<AxiosResponse>,

): Promise<AxiosResponse> => {
const response = await response;

try {
const privateKey = await ... ();
const data = decrypt({
privateKey,
value: response.data.data,
1)
return { ... response, data };
} catch (err) {
console.error([HYBRID DECRYPT ERROR] , err);
return _response;
}
}i

export const hybridDecryptInt: Interceptor = {
onResponse,

};

Below is the Java counterpart that handled the server-side decryption and encryption.

package hybridCrypto;
public class RSACrypt implements Serializable {
public static void generateKeys() {

try {
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

} catch (Exception e) {

e.printStackTrace();

private static PublicKey getPublicKey(String base64PublicKey) throws
Exception {
try {
X509EncodedKeySpec keySpec = new ...;
return KeyFactory.getInstance("RSA").generatePublic(keySpec);
} catch (Exception e) {
throw new Exception("Erro na chave publica", e);

private static PrivateKey getPrivateKey(String base64PrivateKey) throws
Exception {
try {
PKCS8EncodedKeySpec keySpec = new ...;
return KeyFactory.getInstance("RSA").generatePrivate(keySpec);
} catch (Exception e) {
throw new Exception("Erro na chave privada", e);

private static byte[] encrypt(String plainText, PublicKey publicKey)
throws Exception {

Cipher cipher = getCipher();
cipher.init(...);
return cipher.doFinal(...);

private static byte[] decrypt(byte[] cipherText, PrivateKey privateKey)
throws Exception {

Cipher cipher = getCipher();
cipher.init(...);
return cipher.doFinal(...);

private static Cipher getCipher() throws Exception {
return Cipher.getInstance(...);

public static String aesEncrypt(String plainText, String base64PublicKey)
throws Exception {

PublicKey publicKey = ...;
byte[] cipherText = ...;
return toBase64(cipherText);

public static String hybridEncrypt(String plainText, String
base64PublicKey) throws Exception {

AESCrypt aescrypt = new AESCrypt();
String aesEncryptedData = aescrypt.encrypt(...);

String encryptedText = ...;
return encryptedText;

public static String decrypt(String cipherText, String base64PrivateKey)
throws Exception {

byte[] cipherBytes;
cipherBytes = fromBase64(cipherText);
try {
PrivateKey privateKey = ...;
String decryptedText = ...;
return decryptedText;
} catch (Exception e) {
throw new Exception("Erro na decriptacao", e);

public static String hybridDecrypt(String encryptedText, String
base64PrivateKey) throws Exception {

AESCrypt aescrypt = new AESCrypt();
String decriptedData = ...;
return decriptedData;

private static byte[] fromBase64(String str) {
return DatatypeConverter.parseBase64Binary(str);

private static String toBase64(byte[] ba) {
return DatatypeConverter.printBase64Binary(ba);

Results
1. Auditable compliance: the hybrid layer met internal security standards and passed
the company audit for handling executive-sensitive data.

2. Developer transparency: Axios interceptors and mirrored Java utilities made encryption
invisible to business logic and developer workflows.

3. Minimal latency: encryption added no noticeable delay to user actions and did not
degrade UX.

4. Reduced incident surface: mitigated risks from rooted devices, emulators, and man-
in-the-middle attacks.

STAR Case - Design System Drift

Situation

Initially built with React Native Paper as the design choice, the project later underwent Ul
redesigns and custom management requests that pushed the library beyond its intended
scope. The team had stretched component customizations to their limit, creating complex
overrides and inconsistent layouts. This led to design drift across the app and made the
codebase increasingly difficult to maintain and scale.

Task

Replace the overextended Ul library with a flexible styling system that could keep pace
with frequent design changes. The new solution needed to let developers build and style
components in one place, reduce the need for overrides, and speed up page creation without
sacrificing consistency or readability.

Actions

I designed and built React Native String Style, an inline styling tool inspired by Tailwind CSS,

to replace React Native Paper and eliminate dependency on rigid components. It enabled
developers to write utility-based class strings directly in JSX, merging structure and styling
in a single file.

| refactored screens and components to adopt this syntax, simplifying layout creation and
removing the need for complex styled component files. | also introduced design tokens for
colors, spacing, and typography, enabling quick global updates whenever the design system
changed.

https://github.com/ribas89/react-native-string-style

Below is an example showing the two ways to use the styling tool: converting objects to styles
with objToRNStyle() and applying inline utility classes with sstyle.

export const RadioButton: React.FC<RadioButtonProps> = (...}) => {
const [selectedItem, setSelectedItem] = useState(value);

const handleOnPress = (radioltem: RadioItem) => {
setSelectedItem(radioItem);
if (onPress) onPress(radioltem);

¥

const buttonStyle = objToRNStyle({
position: 'jcc aic fg',
height: 'min-height-36',
border: 'w-100% bd-ra-4 bg-radioButton.bg bd-width-1 bd-style-solid',
active: 'bd-color-radioButton.bd.active',
inactive: 'bd-color-radioButton.bd.inactive',

19
return (
<>
{!title && (
<View sstyle={ pd-b-16${hp ? ' pd-1-16' : ''} }>
<Text sstyle="fs-13 1h-16 ff-me c-text.title">{title || ''}</Text>
</View>
)}
<View sstyle={ fdr${hp ? ' pd-h-' + hp : "'} }>
{radiolItems.map((radioIltem, index) => {
const active = selectedItem?.value === radioItem.value;
const lastItem = index === (radioltems?.length || 1) - 1;
return (
<View sstyle={lastItem ? 'fg' : 'fg pd-r-8'} key={index}>
<TouchableOpacity onPress={() => handleOnPress(radioIltem)}>
<View
style={[
_.values(buttonStyle),
active ? buttonStyle.active : buttonStyle.inactive,
1}>
<Text sstyle="fs-14 1h-20 ff-me">{radiolItem.label}</Text>
</View>
</TouchableOpacity>

</View>

);
b}
</View>

</>

};

Results

1. Aligned consistency: one styling language kept visuals uniform across every screen.

2. Clearer readability: concise syntax made components easier to understand and
simplified maintenance.

3. Easier maintenance: removed dependency on heavy Ul libraries and complex
overrides.

4. Faster onboarding: new developers adapted quickly thanks to the familiar Tailwind-style
syntax.

5. Greater flexibility: design updates were applied quickly without breaking existing
layouts.

STAR Case - Inconsistent State Propagation

Situation

Overuse of Redux for managing simple Ul and navigation states caused bloated reducers,
tight coupling, and limited scalability.

Task

Solve the limitations of a Redux-only architecture by establishing a more flexible state
management model. It needed to support different state scopes without losing consistency,
clarity, or performance across the app.

Actions

To separate concerns between global, local, and transient state, | introduced React
Context for feature-specific flows and navigation parameters for transient data transfers.
To keep the team aligned, | documented the new conventions, built typed navigation
helpers, and refactored existing modules to follow the new layered structure.

Below is an example showing how a screen combines Redux, Context, and navigation

parameters to manage all states in an organized way.

import { useRoute } from '@react-navigation/native';
import React, { useContext, useState } from 'react';
import { useSelector } from 'react-redux';

export const ProfileScreen = () => {
const route = useRoute();
const { biometricsEnabledRoute } = (route?.params || {}) as any;

const [biometricEnabled, setBiometricEnabled] = useState(!!
biometricsEnabledRoute);
useContext(...);

const context

const profile = useselector(...)

const handleOnPressBiometrics = async () => {
const newValue = !biometricEnabled;

setBiometricEnabled (newValue);
biometrics.toggle(newValue);

if (!'newValue) return;

modal.warning({
context,

description: "Hi ${profile.name}...",
buttons: [

return (

);
};

Results

1. Cleaner architecture: unified rules removed conflicting data-handling patterns.

2. Faster debugging: predictable data flow simplified issue tracing across screens.

3. Improved performance: isolating state scope reduced unnecessary re-renders.
4. Lower maintenance cost: fewer duplicated states simplified refactors.
5. Stronger reliability: consistent data handling prevented broken flows during navigation.

6. Team alignment: shared conventions improved onboarding and collaboration between

developers.

£8 Safra

Staff Frontend Engineer -

Wallet

Safra

CRIAR MINHA CARTEIRA
JASOU CADASTRADO

Pagar e Transferir

00

Pagamento com
codigo de
barras

Transferéncia

Angular)JS 77 Jun 2019 - Aug 2020

Toque no cartao para comprar com QR

©

Para acessar o SafraWallet digite
oseu CPF e suasenha
AG 0097
C/C 4542474 (""}
VALDECIR APARECIDO BUENO PACHE?@‘

Saldo Entradas Saldas Futuro

Saldo disponivel + limites

R$ 20,00 ®
Pagar e Receber Saque
Transferir Salario
Como
ganhar
bonus

SafraWallet

Qoo o0 9hd188%0825PM

<« Dados do cartao ©
Cobrar e Receber
@ @% = v
Vender Emitir Posicao LSO Compets
com boleto de carteira o
cartao
g O 0 ®

Safra Header

Project Treemap

Unavailable due to development constrained on the company internal environment.
== Tech Stack

* Frameworks: Angular]S, Angular 9

* Languages: TypeScript, JavaScript, HTML5, CSS3, SASS

* Build Tools: Webpack, npm, Node.js

* CI/CD: Jenkins, Git, Custom Git Workflow

* Testing: Jasmine, Karma

* Ul Tools: Sass, KSS

* Version Control: Git (internal repository)

* Project Management: Jira, Confluence

STAR Cases

STAR Case - Multiple Teams Conflicts Under Tight Deadline

Situation

The project faced an aggressive 6-month deadline with 30+ frontend engineers working
across multiple projects (cards, ATM, onboarding, payments, profile). Each team maintained a
separate codebase, yet all merged into a single release pipeline. The compressed schedule
and overlapping workstreams created a chaotic environment of frequent overwrites, lost
commits, unstable builds, and ongoing issues during quality assurance.

Task

Define and implement a reliable integration and release model to restore environment
stability. The goal was to reduce merge conflicts, prevent code loss, and ensure predictable
releases while meeting the delivery deadline.

Actions

| started by breaking down the entire release process from the top. To understand why the
builds kept failing, | reverse engineered the pipeline, tracing it from the App Store
approval steps all the way back to the developer commits.

Once | mapped the flow, | updated the Jenkins configuration to build only from predefined
tags. Since there was no versioning strategy in place, | introduced a manual semantic release
process that triggered deployments only when a new tag was created.

With the pipeline under control, | defined a new branching model inspired by GitHub Flow
and GitFlow, extended to handle multiple environments.

After defining the model, | aligned with the team leads about the new process, detailing how
developers should create branches, tag releases, and merge safely into the shared pipeline.

Below is a simplified diagram of the branching and release model that illustrates how the pipeline

operated after those changes.
W e Fo Rl dov eaen doviziieae (WETZMEEAD RO12s4foaueA

@&j
e
&
W&
&
&
&
&
&
&
@Q‘
é&“@
O
o= S
f‘f % o
& &
&
o
& o
& © |
[
e #
o ¢)
&
3
0
o
'3 P
m»ﬂ
&
& &
PR
1 &
& . “ P
o N
v
fzf I el
< “?"s/\& ';,a
e
& <
&
&
4@3
Q-é'/vg
&
&
° 2
“’\'f I
& '\
Q(:(y f@
&
& &
%
0«&&
& ;’70 &
&, o
fe ,xx?&e Ty
& i S
&
&

Results

1. Controlled rollbacks: release tags and environment branches allowed instant

restoration of any previous version.

2. Consistent environments: cascading rebases kept develop, homologation, and
preproduction branches synchronized with master after each release.

3. Cross-team stability: the new model reduced merge conflicts from around 15 per

release down to 2 on average.
4. Developer safety: isolated branches protected individual work and the shared pipeline.

5. Eliminated QA instability: fixed tags and controlled release candidates made every

change traceable, ensuring consistent validation across environments.

6. Predictable releases: flexible release candidates included only main commits and
approved features, ensuring stable builds for users and quality assurance.

STAR Case - Inconsistent Ul Across Teams

Situation

Under tight deadlines, each squad had its own designer and developers building features with
no alignment across teams. Without a shared design source or centralized library, teams
recreated the same components in different ways, leading to duplicated code, inconsistent
visuals, and a fragmented user experience across the app.

Task

Bring visual and structural consistency back to the product by creating a single source of
truth for Ul. | needed to align all squads around one shared component library that could live
inside the company restricted environment and be easy for every team to adopt without

slowing delivery.

Action

| joined the design squad to understand the centralized work they were creating and took
responsibility for bridging communication between designers and developers. After
assessing each team’s workflow, | determined that the most effective way to standardize the Ul
was by creating a framework-agnostic, ready-to-use CSS component library instead of
Angular]S components, allowing squads to use it in any context. I built the library with Sass for
consistent styling and used KSS to document it with clear visual component references. To
distribute it within the restricted network, | set up a bare Git repository on a shared internal
resource, enabling all squads to pull updates directly into their projects.

Results

1. Wide adoption achieved: the system’s simplicity and open contribution model enabled
all squads to adopt it within weeks.

2. Design drift eliminated: shared components and standardized styling unified behaviors
and visuals across every module.

3. Library stability proven: the architecture endured three facelifts and two complete
redesigns without major refactoring.

4. Documentation standardized: the KSS guide became the single reference for all
squads and defined future documentation practices.

g8 Itau

Frontend Engineer - Angular 2+ | Mar 2018 - Jun 2019

oo N

voxel iDS

itad design system

oo 421 PM - * 421 oM -
oo @ 421 PM - wvoe ® «21 oM -
Ant Antonio
Anténio Q @ /e 123450 ¥ Q 891234 c/c 123450 Antdnio
1234 cic 123450 991234 cic 123450

D) G

saldo em ook & e INOSSOS Servicos
conta corrente sponivels para voce
RS 2.300,00 S fawravisa-3214 R$1.567,90

fechamento vence 07 jun

1 Faca render seu dinheiro
em conta. Invista jé.

<P limite total utilizado agéncia e conta a Nt - cartdes
oy vocé utilizou 10do o seu limte: e O
@D iermtror agincia e conta
8maio
/41
taucard 2.0 Platinum 41 RestaurantedaVilla -R$217,50 i

‘com Itad é
muito facil seu
dinheiro render.

visa 3214

buttons tabs

version 1.1 last updade 05/21/2019 version 1.0 - Last updade 05/23/2019

trés abas.

botdo principal - segmentos.

quatro abas

DESIGN
a8as com seron
dor stamet con
botlo secundirio

© AS 2has semgre devem te arguras gusis
Communication Apps/Software secondary secendary « Tonesempra moster todes 35206 dentee
4a vrwpent, caso o contesdo a0 parmita.

25 3808 podem to ol
OB X 8 @ botso desabiitado + Recomends-se nlo wiar mas de 4 shas sem

- . . wrod
o—— + Abas dever ter o msim 2 palavs ¢ o
primary secendary esronf=tory

Design

botdo Unio
Digital ux system v
. T Version 1.1 last updade 05/29/2019
Itat Unibanco S. A.
secondary
This User Experience system builds customer “ idle selected disabled
loyalty through a smooth journey and a O e 8 wbe
surprising experience. This design is based on S
N) R eheckbox group.
three pillars: easy to find and self-service; easy) ")
to learn and use; and context-based sales and Seeer }
o — . opcdo 1 opgo
management. Design Thinking was applied
throughout the project with a constant and full O ovoz O ooz
focus on customers’ needs. This enabled the ongio3 8 oxso3
designers to build a relationship platform that
vaiidation multiple lines.

offers a great experience, making life easier

for customers and providing end-to-end

service.

Itau Header

I,

aliquam mauris facilsis id

Project Treemap

Unavailable due to development constrained on the company internal environment.
== Tech Stack

* Accessibility: Axe, Screen Reader APIs, WCAG AA

* Build Tools: Node.js, npm, semantic-release, Webpack

» CI/CD: Git, Husky, JFrog Artifactory

* Collaboration: Cross-squad integration, Shared Knowledge Base

* Documentation: Confluence, Internal Design System Docs

* Frameworks: Angular 7, Angular]S

* Languages: CSS3, HTML5, JavaScript, TypeScript, SASS

* Project Management: Confluence, Jira

» Testing: Headless Chrome, Jasmine, Jest, Karma

* Ul Tools: Design Tokens, KSS, Mixins, SASS Utilities, Storybook

* Version Control: Git (multi-repo architecture, company repository)

STAR Cases
STAR Case - No compliance with WCAG Standards

Situation

With more than 90 million users and about 24% of the population living with some form of
disability, a significant number of customers faced barriers using the app. The company had
begun enforcing WCAG accessibility standards across all digital products.

Task

As part of a cross-squad design system team, | was responsible for ensuring the new Angular
7 components complied with WCAG 2AA accessibility standards. The team was tasked to:

1. Integrate accessibility requirements into the design system’s development workflow.

2. Validate accessibility with real users, supported by a dedicated QA subteam composed of
people with disabilities.

3. Guide external consultancy to accelerate implementation and ensure technical alignment
with accessibility best practices.

Action

The effort began by contracting and onboarding a 7-person consultancy team, integrating
them into our workflow and setting up their environments to match the internal Cl process.
With the team established, collaboration expanded to the QA group of testers with
disabilities, whose feedback guided accessibility refinements in real use cases. As the work
evolved, our squad became the bridge between design and engineering, revisiting Ul
patterns and adjusting layouts, color palettes, and interaction models to meet WCAG 2AA
standards. The development phase introduced ARIA roles, keyboard navigation, and color-
contrast adjustments, ensuring full compatibility with NVDA, VoiceOver, and TalkBack. This
transformed accessibility from a patch into a core design system feature. To close the cycle,
the new practices were documented and distributed so future squads could maintain the same
accessibility standards.

Results

1. Achieved WCAG 2AA compliance: all components were validated through real-user
testing with NVDA, VoiceOver, and TalkBack.

2. Enabled inclusive access: more than 90 million users with gained full accessibility
across the company digital products.

3. Standardized accessibility by design: accessibility rules became part of the design
system architecture, not a post-release addition.

4. Ensured long-term scalability: documented practices and reusable patterns preserved
accessibility compliance in all future products.

5. Unified multidisciplinary collaboration: design, engineering, QA, and consultancy teams
worked under a shared accessibility effort.

@ UEPG

Full stack Researcher - Java 7 Mar 2015 to Aug 2017

UE/ip FramemK

FrameMK Frame! MK
Um Framework de Dominio para Formacio de Preco de Venda Um Framework de Dominio para Formacdo de Preco de Venda

Principal to | log. | Contato st3 loga m I
itodo hsc E—
LT Framemk - Método Activity-Based Costing = Subframework Attributes - Linha de
Método ROIC 2
e (ABC) Produgdo
deswrvolvdos
I aibuto
)) [
Alimentar Sistema
Linha de Produgio Tt
Produto
Alividade

Adicionar | Fechar

Pagina Desenvolvida por Renato Ramos.

Vayma Desenvolvide por Renato Rames. ‘

FrameMK FrameMK
Um Framework de Dominio para Formacao de Preco de Venda Um Framework de Dominio para Formacao de Preco de Venda

& esta logado coma: luar Sair Pigina ipal antate Vocé estd logade como sair |

= Atividade - Método ABC

|custo |
quinas|[7000.0 |[Edzar(Desativs

Linha de Producio At

| Adicionar | Fechar

Adicionar | Fechar |

Piging Deseavolida por Reaato Ramas.,

UEPG Header

Project Treemap

Unavailable due to research environment constraints.

= Tech Stack

e Architecture: Service-Oriented Architecture (SOA)
* Build Tools: Ant, Eclipse IDE

* Database: Firebird, MySQL

« Documentation: Internal Technical Guides, UML Models
 Environment: Windows,Debian Linux, VirtualBox

* Frameworks: Apache Struts, FrameMK, JUnit

Integration: REST, SOAP, WSDL

* Languages: CSS, HTML, Java, JSP, SQL, XML

* Modeling: UML (Use Case, Class, Package, Activity Diagrams)
* Testing: JUnit (Unit and Persistence Layer Tests)

* Version Control: Manual dependency management, SVN

* Web Services: REST APIs, SOAP/WSDL for ERP Integration

STAR Cases

STAR Case - Fragmented Research Environment

Situation

The framework ran on a legacy Java Struts architecture with complex dependencies,
Firebird databases, and distributed tools. Each contributor manually configured
environments by himself, resulting in version drift, failed builds, and long onboarding
times.

Task

Design a reproducible environment that unified all dependencies, databases, tools, JUnit
test automation, and SOA integration workflows across all machines.

Action

Packaged the full research stack into a virtual machine image containing Java SDK, Apache
Struts, Ant, JUnit, Firebird, and SVN integration. Embedded startup scripts to initialize the
database, compile the framework, and deploy local web services. Consolidated all UML
diagrams, documents, and guides inside the VM for self-contained reproducibility.

Results

1. Reduced setup time: full onboarding decreased from weeks to one hour.

2. Standardized research execution: all contributors operated within a consistent and
controlled environment.

3. Unified dependencies and tooling: all components integrated into a single virtual
machine image.

4. Preserved research continuity: versioned VM snapshots and SVN references maintained
long-term environment parity.

#* Virtual

Full-stack Engineer - Delphi / MEAN May 2013 - Mar 2015

virtual

4 v ‘ Griice e Comparativo d Produgse do Nes do Jancie

... <

Ficha do Cadastro de Cliente

Virtual Header

Project Treemap

Unavailable due to development constrained on the company internal environment.
== Tech Stack
* Languages: Delphi, JavaScript, TypeScript, SQL, HTML

* Frontend: AngularJS

* Backend: Node.js

* Databases: MongoDB, Microsoft SQL Server
* Reporting: QuickReport, Dephi

* Project Management: Scrum

STAR Cases
STAR Case - Code Ossification

Situation

The insurance management system relied on a Delphi-based PDF parser that converted files
into plain text and navigated fields using company-made custom parse functions.

For more than a decade, the team maintained this fragile approach, a clear case of code
ossification that prevented simpler and more maintainable solutions like regular expressions
from being adopted.

Task

Enable reliable automated extraction of data without breaking existing parsers.

Action

After a few months adjusting the parser through the company’s custom functions, |
proposed introducing regular expressions to simplify data extraction. The idea faced initial
resistance due to years of code ossification and comfort with the old cursor logic.

After repeated attempts and personal insistence, | finally got approval to add the regex
function to the core parser. Once integrated, it quickly proved its value, successfully parsing
complex document sequences that previously required extensive manual position tracking.

With those results, | was asked to help the team on writing and maintaining regex-based
extraction rules for other document schemas, formalizing pattern usage as the new
standard for PDF parsing within the system.

Results

1. Stabilized PDF extraction logic: improved fragile custom parsing with regex-driven
matching, eliminating data loss from manual offsets.

2. Reduced maintenance overhead: legacy functions were gradually deprecated,
simplifying debugging and onboarding for new developers.

3. Improved document coverage: the new regex parser handled multiple schema
variations that were previously unsupported by cursor logic.

4. Enabled team-wide adoption: after internal training, regex usage became a standard
practice for all document parsing routines.

5. Transformed legacy mindset: the function broke a decade of code ossification,
proving modernization could happen without risking stability.

	Summary
	📌 Professional Summary
	A journey of a thousand miles begins with a single step

	🎯 Career Objective
	⚖️ Professional Values
	🤝 Transparency and communication
	⏳ Process
	🤩 User impact first
	🏠 Ownership mindset
	🍎 Healthy code
	🏰 Resilient code

	🖼️ Personal Interests
	🔬 Project Case Studies
	🧠 Neurogram
	Senior Frontend Engineer - React.js 📅 Nov 2023 - Nov 2024

	🌲 Project Treemap
	🧱 Tech Stack

	🌟 STAR Cases
	STAR Case - Fragmented codebase
	Situation
	Task
	Actions
	Results

	STAR Case - Unreliable Deployments
	Situation
	Task
	Actions
	Results

	STAR Case - Code duplication
	Situation
	Task
	Actions
	Results

	🍷 X-Team
	Senior Frontend Engineer - React Native 📅 Sep 2022 - Jul 2023

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Performance Bottleneck
	Situation
	Task
	Actions
	Results

	STAR Case - Unstructured Backend Responses
	Situation
	Task
	Actions
	Results

	STAR Case - Missing Internationalization
	Situation
	Task
	Actions
	Results

	🛍️ Riachuelo
	Senior Frontend Engineer - React Native 📅 Aug 2020 - Aug 2022

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Insecure Client-Server Communication
	Situation
	Task
	Actions
	Results

	STAR Case - Design System Drift
	Situation
	Task
	Actions
	Results

	STAR Case - Inconsistent State Propagation
	Situation
	Task
	Actions
	Results

	💵 Safra
	Staff Frontend Engineer - AngularJS 📅 Jun 2019 – Aug 2020

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Multiple Teams Conflicts Under Tight Deadline
	Situation
	Task
	Actions
	Results

	STAR Case - Inconsistent UI Across Teams
	Situation
	Task
	Action
	Results

	💵 Itaú
	Frontend Engineer - Angular 2+ | 📅 Mar 2018 - Jun 2019

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - No compliance with WCAG Standards
	Situation
	Task
	Action
	Results

	🎓 UEPG
	Full stack Researcher - Java 📅 Mar 2015 to Aug 2017

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Fragmented Research Environment
	Situation
	Task
	Action
	Results

	☂️ Virtual
	Full-stack Engineer - Delphi / MEAN 📅 May 2013 – Mar 2015

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Code Ossification
	Situation
	Task
	Action
	Results

