
build your project on the rock

Summary

📌 Professional Summary

⚖️ Professional Values

🎯 Career Objective

🖼️ Personal Interests

🔬 Project Case Studies

1 🧠 Neurogram

1.1 🌲 Project Treemap

1.2 🧱 Tech Stack

1.3.1 STAR Case - Fragmented codebase

1.3.2 STAR Case - Unreliable Deployments

1.3.3 STAR Case - Code duplication

2 🍷 X-Team

2.1 🌲 Project Treemap

2.2 🧱 Tech Stack

2.3.1 STAR Case - Performance Bottleneck

2.3.2 STAR Case - Unstructured Backend Responses

2.3.3 STAR Case - Missing internationalization

3 🛍️ Riachuelo

3.1 🌲 Project Treemap

3.2 🧱 Tech Stack

3.3.1 STAR Case - Insecure Client-Server Communication

•

•

•

•

•

•

◦

◦

▪

▪

▪

•

◦

◦

▪

▪

▪

•

◦

◦

▪

3.3.2 STAR Case - Design System Drift

3.3.3 STAR Case - Inconsistent State Propagation

4 💵 Safra

4.1 🌲 Project Treemap

4.2 🧱 Tech Stack

4.3.1 STAR Case - Multi Squad Conflicts Under Tight Deadline

4.3.2 STAR Case - Inconsistent UI Across Teams

5 💵 Itaú

5.1 🌲 Project Treemap

5.2 🧱 Tech Stack

5.3.1 STAR Case – No compliance with WCAG Standards

6 🎓 UEPG

6.1 🌲 Project Treemap

6.2 🧱 Tech Stack

6.3.1 STAR Case - Fragmented Research Environment

7 ☂️ Virtual

7.1 🌲 Project Treemap

7.2 🧱 Tech Stack

7.3.1 STAR Case - Code Ossification

📌 Professional Summary

A journey of a thousand miles begins with a single step

▪

▪

•

◦

◦

▪

▪

•

◦

◦

▪

•

◦

◦

▪

•

◦

◦

▪

My PC from 2007

With this PC, I took my first steps building sites with Adobe Flash and PHP, a combo long gone,

but one that set me on the developer path I plan to walk for as long as I can.

This is where this path has brought me so far. For more details, check the 🔬 Project Case

Studies.

Sector Company Stack / Role Duration

Startup Neurogram React Web Nov 2023 - Nov

2024

Startup XTeam React Native Sep 2022 - Jul 2023

Retail Riachuelo React Native Aug 2020 - Aug

2022

Banking Safra AngularJS Jun 2019 - Aug 2020

Banking Itaú Angular 2+ Mar 2018 - Jun 2019

Academia UEPG Java Mar 2015 - Aug

2017

Insurance Virtual Delphi / MEAN May 2013 - Mar

2015

Self-Employed Freelance Software and hardware technician 2004 - 2008

🎯 Career Objective

I’m seeking a role in an environment that embraces transparency and communication, where

clear processes and collaboration can bring out the best in my professional values and

skills.

My goal is to join or help a team become high-performing, deliver an unforgettable

developer and user experience, and improve the quality of life for both the team and the

end users.

⚖️ Professional Values

Through my previous roles, I’ve learned values that go beyond the code, values that support

the team from concept to release. These are the values I bring to every team I join.

🤝 Transparency and communication

This is my top priority. I make sure the team knows when a task will be done, how we plan to

develop it, and why we approach it that way.

If we can’t deliver on time, the next step is to discuss openly what can be done within the

time we have.

Delaying bad news, keeping a task “almost done” for weeks, or omitting the release date

are just ways of avoiding accountability. That is why we commit to transparency, because

when we share issues early, we gain room to react and adapt together.

⏳ Process

Every development team has a process, even if it is ‘Go Horse’, it is still a process.

We seek to understand how the process works, document it clearly, and improve it step by

step.

This is the core of Agile practice: building predictability and achieving sustainable delivery

over time.

🤩 User impact first

Frontend codebases “die” on average in 5 years through rewrites, framework shifts, or

redesigns.

Backend codebases last on average 10 years before major replacement or replatforming.

But a lost user is lost forever.

New features, analytics, redesigns, and refactorings mean nothing if the user is gone.

That is why we prioritize user impact above all, making sure every decision serves what is

best for the final user.

🏠 Ownership mindset

I treat the software as if I am the owner.

That means caring about quality, stability, and user experience, not just moving tasks to

“done.”

After years of dealing with bad code, I feel responsible for long-term maintainability and for

always leaving the codebase better than I found it.

🍎 Healthy code

If you don’t take time to maintain the code, the code will take the time for you.

Maintenance is always required.

To save maintenance costs, I write clean, structured code from the start.

When that is not possible, I refactor bad patterns, improve readability, and simplify

structures.

Sometimes a codebase needs significant maintenance, and the only safe way is for the team

to acknowledge it and schedule time for it.

🏰 Resilient code

Healthy code is not always resilient.

A codebase can be clean and organized, yet still collapse at runtime under unexpected

cases or heavy load.

A mindful developer considers the code, the hardware, the environment, the data flow, and

system behavior under pressure.

That is why I code for the worst case: catching exceptions, validating input data, creating

fallbacks instead of assuming the happy path, and logging external processes.

🖼️ Personal Interests

My interest in high quality code goes beyond work and deep into my personal interests. But I also

have others, here is a list:

Blogging: This is an old blog from 2013, now archived. I made several blogs over the years

and plan to consolidate all of them soon.

Photography: A personal hobby I keep improving over time.

Music: I’m no musician, but I try to play some instruments. My favorite genres are hard rock

and 2000s techno.

Game modding: I love writing code for game mods and recently started publishing them.

Here’s my collection for Project Zomboid check it out.

Nature: The only reasons I ever leave home are to buy groceries, or stay in parks and

campgrounds. I feel at peace being in nature, listening to the symphony of bugs and birds.

•

•

•

•

•

https://web.archive.org/web/20130302224351/http://jonathanribas.com/
https://git.ribas89.co.uk/ribsorg/project-zomboid-ribs-mods

🔬 Project Case Studies

My career objective has been shaped by every project I’ve worked on.

Here is how I contributed to each of them, presented using the STAR (Situation, Task, Action,

Result) approach.

🧠 Neurogram

Senior Frontend Engineer - React.js 📅 Nov 2023 - Nov 2024

Neurogram Header

🌲 Project Treemap

Neurogram Treemap

🧱 Tech Stack

Backend and Cloud: Firebase

Build Configuration: Install, NPM, Vite, Vite Plugin JavaScript Obfuscator, Vite Plugin SVGR,

Vite TSConfig Paths

Charts and Visualization: Plotly JS, Plotly JS Basic Dist, Plotly JS Dist, React Minimal Pie Chart,

React Plotly JS, Victory Native

•

•

•

Component Library and UI: Bootstrap, Framer Motion, React Draggable, React Zoom Pan

Pinch, React Device Detect, React Helmet Async, React Intersection Observer

Crypto: Crypto ES, JSEncrypt

Data Fetching and Networking: Axios, Axios Retry, React Use WebSocket, Retry

Date and Time: Day JS, Moment

Documents and PDFs: React PDF Renderer, Canvas2Image, HTML2Canvas, JSPDF, PDFJS Dist,

Quill To PDF, React PDF

Encryption and Security: Crypto ES, JSEncrypt

Forms and Validation: Hookform Resolvers, React Hook Form, Yup, Yup Locales

Internationalization: Brazilian Utils, Get User Locale, I18Next, React I18Next, Yup Locales

JavaScript Framework: React, React DOM

Media and Players: React Player, Video React

Mocking and Testing: Mirage JS, MSW, Jest, ESLint, ESLint Plugin React Hooks, ESLint Plugin

React Refresh, TypeScript ESLint Plugin, TypeScript ESLint Parser

Routing: React Router DOM

State Management: React Query

Storage: LocalForage, LocalForage Session Storage Wrapper

Styling and Normalization: Modern Normalize

Text and Editors: Suneditor, Suneditor React

Utilities: Buffer, Filt, Get User Locale, Lodash, Match Sorter, Randomatic, ShortID, Sort By,

Stream Browserify, UUID

Visualization Enhancements: React Zoom Pan Pinch, React Draggable, Plotly JS, React Plotly

JS

Web Platform: React DOM, React Native Web

🌟 STAR Cases

STAR Case - Fragmented codebase

Situation

The previous codebase combined Rails, React, Tailwind, GraphQL, and Docker across multiple

repositories with duplicated components and scattered configs. This fragmentation caused

long onboarding times, inconsistent standards, and clear signs of vendor lock-in.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Task

Considering the in-house team’s low seniority and the complexity of the project, I set out to

reshape the project’s stack, replacing dependency hell with an architecture that was simple,

maintainable, and sustainable, pursuing the following objectives:

Standardize tooling into a single, reliable workflow.

Accelerate onboarding so developers could focus on building instead of setup.

Align stack with team skills rather than forcing over-engineered solutions.

Prevent future rewrites by choosing technologies compatible with the existing backend.

Actions

My first step was to assess what could be salvaged from the frontend. After several attempts,

I confirmed that refactoring would be slower than starting fresh. Between Next.js and Vite,

the latter was chosen for its faster builds, simpler configuration, and better alignment with

the backend stack based on Firebase and Google Cloud Platform.

Instead of leaving developers to wrestle with separate Babel, PostCSS, Tailwind, and Docker

setups, I collapsed dependencies into one consistent Vite configuration. This dramatically

improved setup time and enabled features like obfuscation and vendor chunking by default.

Below is the build configuration file I introduced:

1.

2.

3.

4.

import react from "@vitejs/plugin-react";

import tsconfigPaths from "vite-tsconfig-paths";

import obfuscatorPlugin from "vite-plugin-javascript-obfuscator";

type buildConfigOptions = {

 manualChunks?: boolean;

 vendors?: string[];

};

export const buildConfig =

 ({ vendors, manualChunks }: buildConfigOptions = {}) =>

 ({ mode, command }) => {

 const isProdBuild = ...;

 const noMinify = ...;

 const minify = ...;

 const vendorPath = [

 "jsencrypt",

 "i18n",

 "yup",

 "lodash",

 "dayjs",

 ...

 "lib-framework/src/fonts",

 "lib-framework/src/icons",

 "lib-framework/src/assets",

 "lib-framework/src/hooks",

 "lib-framework/src/tokens",

 "lib-framework/src/components",

 ...(vendors || []),

];

 const config = {

 define: {

 "process.env": {},

 },

 plugins: [

 react(),

 tsconfigPaths(),

 obfuscatorPlugin({

 apply: () => isProdBuild,

 ...

 }),

],

 build: {

 minify,

 rollupOptions: {

 treeshake: true,

 output: {

 manualChunks(id: any) {

 if (!manualChunks) {

 ...

 }

 for (const vendor of vendorPath) {

 ...;

 }

 return ...;

 },

 },

Results

Build security improved: JavaScript obfuscation protected intellectual property and

reduced reverse-engineering risks.

Bundle performance optimized: vendor chunking and tree-shaking in the Vite

configuration reduced payload size and improved runtime efficiency.

Maintenance costs lowered: collapsing scattered configs into a single pipeline

simplified upkeep and reduced time wasted troubleshooting environment inconsistencies.

New projects bootstrapped quickly: standardized Vite setup enabled starting fresh

projects in minutes with all necessary configurations ready to use.

Onboarding accelerated: environment setup time dropped from 5 days to 5 minutes,

making it straightforward for developers of any seniority level to start coding

immediately.

Team focus regained: developers shifted attention back to delivering features instead

of resolving fragmented build and config issues.

STAR Case - Unreliable Deployments

Situation

The deployment pipeline was entirely controlled by the consultancy, including the production

and staging environments. Deployments were triggered automatically with every change,

but the maturity of the software and the team was not ready for such automation. As a result,

bugs were introduced directly into production, breaking the user experience and creating

unnecessary troubleshooting overhead for the team.

Task

Shift the ownership of the pipeline and environments back to the company, simplify the

deployment, and give full control to the in-house team. The objective was to design a fast,

easy, and manual deployment flow that would only run when a developer explicitly triggered

it, reducing accidental breakages in production.

 },

 },

 ...

 return config;

 };

1.

2.

3.

4.

5.

6.

Actions

I redesigned the deployment process using the minimum resources and complexity possible.

Since the company was part of the Google for Startups program, the infrastructure of choice

was Firebase. To make deployments simple and predictable, I created a GitHub Actions

workflow that consolidated all frontend projects one codebase. This ensured the process was

manual, quick, and transparent, while eliminating the hidden consultancy-owned pipelines.

Below is the GitHub Action I authored to handle all frontend projects in one place:

name: manual deploy

on:

 workflow_dispatch:

 inputs:

 project-name:

 type: choice

 ...

 build-type:

 type: choice

 ...

env:

 ...

run-name: ${{ inputs.build-type }} TO ${{ inputs.project-name }} AT $

{{ github.event.repository.pushed_at }} WITH ${{ github.sha }}

jobs:

 deploy_firebase:

 runs-on: ubuntu-latest

 defaults:

 run:

 working-directory: ${{ github.workspace }}/proj-${{inputs.project-

name}}/

 steps:

 ...

 - name: Deploy

 run: |

 curl -sL https://firebase.tools | bash

 firebase deploy --only hosting:target-${{inputs.project-name}} --

token ... --project=project-${{inputs.project-name}}-DEV --config="../

lib-framework/firebase.json"

Results

Auditable and predictable deployments: GitHub Actions provided structured logs and

version traceability, ensuring every release could be tracked and verified.

Full control of environments: staging and production ownership returned to the in-

house team, preventing external bottlenecks and restoring confidence in releases.

Independence from external vendors: embedding the deployment pipeline internally

removed reliance on opaque consultancy infrastructure and secured long-term

ownership.

Production incidents virtually eliminated: replacing consultancy-controlled auto-

deploys with manual GitHub Actions workflows reduced the risk of pushing unstable

code directly into production.

Simplified release governance: a single reusable workflow handled all frontend

projects, reducing coordination overhead and increasing team-wide transparency.

Streamlined deployment process: releases became a two-click manual action,

intentionally designed to be easy and reliable for any seniority level on the team.

STAR Case - Code duplication

Situation

Multiple projects implemented the same logic for API calls, encryption, i18n, and UI

components. This led to frequent code duplication, inconsistencies between projects, and bugs

caused by drift in how core features were handled.

Task

Eliminate duplicated logic by creating a single framework that standardized core features

and could be reused across all projects. The goal was to ensure consistency, reduce

maintenance overhead, and accelerate new project setups.

Actions

I authored a centralized internal library-framework that included:

1. A custom axios layer with interceptors and typed adapters.

2. A unified crypto module using a hybrid combination of RSA and AES.

3. Mock Service Worker patterns and mock data for consistent testing and development.

4. Preconfigured project templates and setup files to enable fast project creation. 5. Providers

for Firebase, context, i18n, overlay, and query handling.

6. Reusable UI components and design tokens.

1.

2.

3.

4.

5.

6.

Lib Framework Providers

Results

Bug rates reduced: redundant and inconsistent duplicate logic was eliminated,

reducing maintenance issues.

Core features by default: i18n, crypto, HTTP, and mocks were included by default in

every project.

New projects scaffolded in minutes: a complete baseline setup was instantly available

for new development.

Single source of truth: centralized frontend architecture improved maintainability and

increased team productivity.

1.

2.

3.

4.

🍷 X-Team

Senior Frontend Engineer - React Native 📅 Sep 2022 - Jul 2023

CellarTracker Header

🌲 Project Treemap

CellarTracker Treemap

🧱 Tech Stack

Analytics: Mixpanel React Native

Animations: Moti, Motify Interactions, React Native Reanimated

Assets Files: Expo Asset, React Native Dynamic App Icon

Auth: Expo Apple Authentication, Expo Auth Session, Expo Local Authentication

•

•

•

•

Build Configuration: Copy Files From To, Expo Build Properties, Expo Dev Client, Patch

Package, Postinstall Postinstall

Camera: Expo Camera

Charts: React Native Chart Kit, Victory Native

Clipboard: React Native Clipboard

Config Plugins: Config Plugins Detox, Config Plugins Dynamic App Icon

Crypto: Expo Crypto

Data: Apisauce, Axios Auth Refresh, Deepmerge, QS

Dates: Date Fns

Deployment: Expo Updates

Device: Expo Application, Expo Constants, Expo Device, Expo Linear Gradient, Expo Linking,

Expo Location, Expo Mail Composer, Expo Notifications, Expo Random, Expo Splash Screen,

Expo Status Bar, Expo System UI, Expo Web Browser

Feature Flags: Flagged

Fonts Icons: Expo Fonts, Expo Google Fonts Arbutus Slab, Expo Google Fonts Inter, Expo

Vector Icons, React Native Vector Icons

Forms Validation: Formik, Hookform Resolvers, React Hook Form, React Native Formik, Yup

Images: Expo Image, Expo Image Manipulator, Expo Image Picker

Internationalization: Expo Localization, FormatJS Intl DateTimeFormat, FormatJS Intl

GetCanonicalLocales, FormatJS Intl Locale, FormatJS Intl NumberFormat, FormatJS Intl

PluralRules, Intl, React Intl

JavaScript Framework: Expo, React, React Native

Markup Parsing: BBob Plugin Helper, BBob Preset, BBob React, React Native Render HTML

Media: Expo AV, Expo Barcode Scanner, Expo Media Library

Monitoring: Reactotron React Native, Reactotron Redux, Redux Logger

Navigation: React Navigation Bottom Sheet, React Navigation Bottom Tabs, React Navigation

Drawer, React Navigation Elements, React Navigation Material Top Tabs, React Navigation

Native, React Navigation Native Stack, React Navigation Stack

Performance: Shopify FlashList

Search: Diacritics, Fuse JS

State Management: React Redux, Redux Persist, Redux Toolkit

Storage: React Native Async Storage

Styling: Gorhom Bottom Sheet, React Native Calendars, React Native Keyboard Aware Scroll

View, React Native Masked View, React Native Multi Slider, React Native Pager View, React

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Native Paper, React Native Paper Dropdown, React Native Safe Area Context, React Native

Screens, React Native Segmented Control, React Native Tab View

Testing: Detox, Detox Recorder, Jest, Jest Expo, React Native Testing Library, React Test

Renderer, Testing Library Jest DOM, Testing Library Jest Native, Testing Library React, Testing

Library React Native, TS Jest

TypeScript Linting: ESLint, ESLint Config Prettier, ESLint Plugin FormatJS, ESLint Plugin

Prettier, TypeScript

Web: React DOM, React Native Web

🌟 STAR Cases

STAR Case - Performance Bottleneck

Situation

Before my involvement, the app was built only with a dozen hard-coded entries. This limited

dataset masked scalability issues in the fetching and rendering logic. After I integrated the

backend, the app received thousands of real bottle registries, and the existing

implementation could not handle this scale, causing the app to freeze during feching, filtering,

grouping, and searching.

Task

Re-architect how the app handled large-scale data to:

1. Build a modular and maintainable architecture for data and UI.

2. Enhance user experience with smooth navigation and search.

3. Ensure accurate results across all features.

4. Support thousands of records without freezing.

Actions

First I needed to guarantee the data was loaded quickly and accurately. For that I reviewed

how the app was fetching and storing information and found deeply nested loops,

duplicated logic and recalculations on every action. To reorganize the data fetching and

storage flow, I created consistent patterns for how records were requested, saved and

displayed. I also introduced a preloading logic that ensured data was available before the UI

rendered. This eliminated unnecessary reload cycles and gave users a faster and smoother

experience from cold boot.

After that I addressed the UI data rendering code. Many filtering and sorting elements were

duplicated and inconsistent so I refactored them into reusable components which made

the interface easier to maintain and extend. To improve the experience of browsing large

•

•

•

inventories I introduced sectioned lists and infinite scroll which reduced rendering cost and

gave users a smooth and responsive navigation.

Below is one of the optimizations I introduced to the selectors.

- export const selectCustomFilters = (...) => {

- ...

- return {

- locations: [

- ...new Set(

- cellar

- .map(i => {

- if (i.Holdings) {

- return i.Holdings.map(holding => {

- if (holding.Locations) {

- return holding?.Locations.map(k => {

- return k.Location;

- });

- } else {

- return;

- }

- }).flat();

- }

- return;

- })

- .flat()

- .filter(i => typeof i === 'string'),

-),

-],

- ...

+ const FilterPendingDataArray = (inCellarWines: InCellarWinePending[]) => {

+ const resultData = {} as FilterObject<PendingFilters>;

+

+ inCellarWines?.forEach?.(wine => {

+ const hasBottles = wine?.Purchases?.some?.(p => !!p?.Quantity);

+ if (!hasBottles) return;

+

+ addNewFilterDataItem(resultData, 'appellation', wine?.Appellation);

+ ...

+

Results

Better user experience: responsive infinite scrolling and grouped lists improved

navigation.

Fast search and filtering: thousands of entries could be queried without performance loss.

Higher developer productivity: reusable, modular UI components reduced duplication.

Scalable architecture: a foundation that supported new features and long-term growth.

Smooth performance: large datasets became responsive and near-instant to operate on.

STAR Case - Unstructured Backend Responses

Situation

After we managed to consistently recover thousands of entries across the app, the next

challenge was the lack of a proper model to organize, sort, and feed data into the UI. The

core issue was the same as before: the data model was partially incorrect and hardcoded.

In addition, the backend did not provide a reliable way to validate its payloads, and in many

cases critical fields were missing.

Task

Create a reliable way to handle the app’s deeply nested and inconsistent backend data in order

to:

1. Enable users to quickly find and browse bottles with accurate results.

2. Ensure the model could scale to thousands of entries without breaking.

+ wine?.Purchases?.forEach(p => {

+ if (!p?.Quantity) return;

+ addNewFilterDataItem(resultData, 'bottleSize', p?.Size);

+ });

+ });

+

+ const { appellation, bottleSize, country, masterVarietal, region,

subRegion, type } = resultData;

+ [appellation, bottleSize, country, masterVarietal, region, subRegion,

type].forEach(a => a?.sort?.(sortStringAsc));

+

+ const { vintage } = resultData;

+ [vintage].forEach(a => a?.sort?.(sortNumberAsc));

+

+ return resultData;

+ };

1.

2.

3.

4.

5.

3. Establish a consistent foundation for filtering and search.

4. Resolve issues caused by missing and unreliable fields.

Actions

To solve this I restructured the data handling into a graph-structured traversal model where

each level of information (bottles, holdings, locations, bins) was treated as a connected node.

This approach created a navigable structure where starting from a node like a location you

could immediately find the bottles stored there and from those bottles trace back to their

vintage or other attributes. This replaced scattered nested loops with a clear and

predictable flow, making the model easier to maintain, extend, and scale.

This graph approach gave three major advantages:

1. Consistency: the same traversal logic powered cellar, pending, and consumed states,

removing duplication and errors.

2. Extensibility: adding a new filter meant only extending traversal rules for a node, not rewriting

entire loops.

3. Traversal clarity: instead of nested loops, each level of the data (wine → holding → location →

bin) contributed in an organized way.

Transversal graph model

Results

Extensible filters: new filter types were added without breaking existing functionality.

Faster and accurate search: browsing and filtering across thousands of entries became

smooth and responsive.

Maintainable data model: a graph-inspired approach organized unstructured responses

into a predictable system.

Reliable filtering: users could apply filters consistently even when backend data was

incomplete.

1.

2.

3.

4.

STAR Case - Missing Internationalization

Situation

The app serves a global audience of wine collectors who expect multiple language support.

While there were some early attempts at internationalization, the application was

inconsistent and incomplete. Many components still relied on hardcoded English strings for

filters, chips, dropdowns, and error messages. This incomplete approach made the UI feel

disjointed and awkward, blocking full localization and limiting the app’s ability to deliver a

scalable, accessible international experience.

Task

Establish a consistent internationalization pattern to:

1. Create a scalable i18n foundation that developers could apply uniformly across the app.

2. Ensure UI elements like filters, chips, and dialogs were fully translation-ready.

3. Fix prior inconsistencies and enable a seamless multilingual experience for end users.

4. Replace remaining hardcoded strings with localized messages.

Actions

I refactored the application to use a consistent internationalization pattern, replacing static

strings with translated messages across components. To simplify adoption, I created hooks to

make it easy to pull translations into any new component.

Below is the hook I introduced, which encapsulated the logic for pulling translation messages,

formatting them with react-intl, and wiring them into navigation flows. This removed

duplication and made internationalization extensible across filters, chips, bottom sheets, and

dropdowns:

import {useNavigation, useRoute} from '@react-navigation/native';

import {useIntl} from 'react-intl';

import {useEffect, useRef} from 'react';

const useEventActionSheet = ({messages, title, params, onSelect}) => {

 const route = useRoute();

 const {formatMessage} = useIntl();

 const navigation = useNavigation();

 ...

 useEffect(() => {...}, [route?.params]);

 const openSheet = () => {

 const options = Object.keys(messages).map(key => {

 const message = messages[key];

 return {

 label: formatMessage(message),

 value: message.value,

 };

 });

 navigation.navigate('EventActionSheet', {...});

 };

 return [openSheet];

};

export default useEventActionSheet;

Results

Broader international reach: multilingual support prepared the app to serve a global user

base effectively.

Consistent user interface: standardized messaging eliminated awkward or disjointed UI

patterns.

Faster development workflows: developers could add new components with built-in i18n

support and less duplication.

Scalable i18n foundation: reusable hooks centralized logic and ensured consistent

adoption across the app.

Translation-ready UI: all hardcoded strings were removed and replaced with localized

messages.

1.

2.

3.

4.

5.

🛍️ Riachuelo

Senior Frontend Engineer - React Native 📅 Aug 2020 - Aug 2022

Simplifica Header

🌲 Project Treemap

Simplifica Treemap

🧱 Tech Stack

Analytics: React Native Firebase Analytics

Animations: Lottie React Native, React Native Collapsible, React Native Modal, React Native

Modal Datetime Picker, React Native Switch Toggle

Authentication: React Native OTP Framework, RN Local Authentication, RN SMS Retriever

Build Configuration: Babel Plugin Root Import, Metro React Native Babel Preset, React Native

Config

Camera: React Native Camera

Charts: React Native SVG Charts

Crypto: Crypto ES, JSEncrypt

Data: Axios, Axios Cache Adapter, Axios Retry, Cheerio

Dates: Day JS, React Native DateTimePicker

•

•

•

•

•

•

•

•

•

Deployment: App Center Code Push, React Native Code Push

Device: React Native Device Info, React Native Version Number

Documents and Files: React Native Blob Util, React Native Document Picker, React Native

File Viewer, React Native PDF, React Native Share

Encryption: React Native Sensitive Info

Forms Validation: Hookform Resolvers, React Hook Form, Yup, Yup Locale PT

Internationalization: Brazilian Utils

JavaScript Framework: React, React Native

Media: React Native Image Pan Zoom, React Native Image Picker, React Native Image Slider

Box, React Native SVG, React Native SVG Transformer

Monitoring: Reactotron React Native, Reactotron Redux

Navigation: React Navigation Native, React Navigation Native Stack

Permissions: React Native Permissions

Pickers UI: React Native Picker, React Native Picker Module

State Management: Redux Thunk, Redux Toolkit

Storage: React Native Async Storage

Styling: React Native Keyboard Aware Scroll View, React Native Lottie Splash Screen, React

Native Ratings, React Native Safe Area Context, React Native Screens, React Native String

Style

Testing: React Test Renderer

TypeScript Linting: ESLint, React Native ESLint Config, TypeScript, TypeScript ESLint Parser,

TypeScript ESLint Plugin

Utilities: Day JS, Lodash, Randomatic

🌟 STAR Cases

STAR Case - Insecure Client-Server Communication

Situation

The company launched a security initiative requiring protection of confidential data on

rooted devices, emulators, and man in the middle attacks. It required to strengthen security

beyond HTTPS and ensure compliance without adding latency or disrupting the user

experience.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Task

Implement an additional security mechanism to protect data exchanged between React

Native and Java endpoints. Ensure key management, payload encryption, and compatibility

with existing systems.

Actions

Instead of relying solely on HTTPS, I implemented an RSA + AES model, where each request was

encrypted and decrypted on both React Native client and Java Server.

On the frontend, I created a TypeScript module that generated AES keys per session, encrypted

them with the public RSA key, and transparently handled encryption and decryption through Axios

interceptors.

On the backend, I developed a Java utility library to mirror this logic. It managed key

exchange, payload decryption, and response re-encryption, ensuring perfect alignment

between platforms.

Below is Axios interceptor to encrypt payloads, creating a transparent and reusable security

layer across the entire app.

import { AxiosRequestConfig, AxiosResponse } from 'axios';

import { ... } from '~/utils/crypto';

import { ... } from '~/utils/env';

import { Interceptor } from './types';

const onRequest = async (

 config: Promise<AxiosRequestConfig>,

): Promise<AxiosRequestConfig> => {

 const oldConfig = await config;

 const { data: value } = oldConfig;

 const publicKey = await ...();

 const newConfig = {

 ...oldConfig,

 data: {

 data: encrypt({

 publicKey,

 value,

 }),

Below is the Java counterpart that handled the server-side decryption and encryption.

 },

 };

 return newConfig;

};

export const hybridEncryptInt: Interceptor = {

 onRequest,

};

const onResponse = async (

 response: Promise<AxiosResponse>,

): Promise<AxiosResponse> => {

 const _response = await response;

 try {

 const privateKey = await ...();

 const data = decrypt({

 privateKey,

 value: _response.data.data,

 });

 return { ..._response, data };

 } catch (err) {

 console.error(`[HYBRID DECRYPT ERROR]`, err);

 return _response;

 }

};

export const hybridDecryptInt: Interceptor = {

 onResponse,

};

package hybridCrypto;

public class RSACrypt implements Serializable {

 public static void generateKeys() {

 try {

 KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

 ...

 } catch (Exception e) {

 ...

 e.printStackTrace();

 }

 }

 private static PublicKey getPublicKey(String base64PublicKey) throws

Exception {

 try {

 X509EncodedKeySpec keySpec = new ...;

 return KeyFactory.getInstance("RSA").generatePublic(keySpec);

 } catch (Exception e) {

 throw new Exception("Erro na chave pública", e);

 }

 }

 private static PrivateKey getPrivateKey(String base64PrivateKey) throws

Exception {

 try {

 PKCS8EncodedKeySpec keySpec = new ...;

 return KeyFactory.getInstance("RSA").generatePrivate(keySpec);

 } catch (Exception e) {

 throw new Exception("Erro na chave privada", e);

 }

 }

 private static byte[] encrypt(String plainText, PublicKey publicKey)

throws Exception {

 Cipher cipher = getCipher();

 cipher.init(...);

 return cipher.doFinal(...);

 }

 private static byte[] decrypt(byte[] cipherText, PrivateKey privateKey)

throws Exception {

 Cipher cipher = getCipher();

 cipher.init(...);

 return cipher.doFinal(...);

 }

 private static Cipher getCipher() throws Exception {

 return Cipher.getInstance(...);

 }

 public static String aesEncrypt(String plainText, String base64PublicKey)

throws Exception {

 PublicKey publicKey = ...;

 byte[] cipherText = ...;

 return toBase64(cipherText);

 }

 public static String hybridEncrypt(String plainText, String

base64PublicKey) throws Exception {

 AESCrypt aescrypt = new AESCrypt();

 String aesEncryptedData = aescrypt.encrypt(...);

 String encryptedText = ...;

 return encryptedText;

 }

 public static String decrypt(String cipherText, String base64PrivateKey)

throws Exception {

 byte[] cipherBytes;

 cipherBytes = fromBase64(cipherText);

 try {

 PrivateKey privateKey = ...;

 String decryptedText = ...;

 return decryptedText;

 } catch (Exception e) {

 throw new Exception("Erro na decriptacao", e);

 }

 }

 public static String hybridDecrypt(String encryptedText, String

base64PrivateKey) throws Exception {

 AESCrypt aescrypt = new AESCrypt();

 String decriptedData = ...;

 return decriptedData;

 }

 private static byte[] fromBase64(String str) {

 return DatatypeConverter.parseBase64Binary(str);

 }

 private static String toBase64(byte[] ba) {

 return DatatypeConverter.printBase64Binary(ba);

Results

Auditable compliance: the hybrid layer met internal security standards and passed

the company audit for handling executive-sensitive data.

Developer transparency: Axios interceptors and mirrored Java utilities made encryption

invisible to business logic and developer workflows.

Minimal latency: encryption added no noticeable delay to user actions and did not

degrade UX.

Reduced incident surface: mitigated risks from rooted devices, emulators, and man-

in-the-middle attacks.

STAR Case - Design System Drift

Situation

Initially built with React Native Paper as the design choice, the project later underwent UI

redesigns and custom management requests that pushed the library beyond its intended

scope. The team had stretched component customizations to their limit, creating complex

overrides and inconsistent layouts. This led to design drift across the app and made the

codebase increasingly difficult to maintain and scale.

Task

Replace the overextended UI library with a flexible styling system that could keep pace

with frequent design changes. The new solution needed to let developers build and style

components in one place, reduce the need for overrides, and speed up page creation without

sacrificing consistency or readability.

Actions

I designed and built React Native String Style, an inline styling tool inspired by Tailwind CSS,

to replace React Native Paper and eliminate dependency on rigid components. It enabled

developers to write utility-based class strings directly in JSX, merging structure and styling

in a single file.

I refactored screens and components to adopt this syntax, simplifying layout creation and

removing the need for complex styled component files. I also introduced design tokens for

colors, spacing, and typography, enabling quick global updates whenever the design system

changed.

 }

}

1.

2.

3.

4.

https://github.com/ribas89/react-native-string-style

Below is an example showing the two ways to use the styling tool: converting objects to styles

with objToRNStyle() and applying inline utility classes with sstyle.

export const RadioButton: React.FC<RadioButtonProps> = (...}) => {

 const [selectedItem, setSelectedItem] = useState(value);

 const handleOnPress = (radioItem: RadioItem) => {

 setSelectedItem(radioItem);

 if (onPress) onPress(radioItem);

 };

 const buttonStyle = objToRNStyle({

 position: 'jcc aic fg',

 height: 'min-height-36',

 border: 'w-100% bd-ra-4 bg-radioButton.bg bd-width-1 bd-style-solid',

 active: 'bd-color-radioButton.bd.active',

 inactive: 'bd-color-radioButton.bd.inactive',

 });

 return (

 <>

 {!!title && (

 <View sstyle={`pd-b-16${hp ? ' pd-l-16' : ''}`}>

 <Text sstyle="fs-13 lh-16 ff-me c-text.title">{title || ''}</Text>

 </View>

)}

 <View sstyle={`fdr${hp ? ' pd-h-' + hp : ''}`}>

 {radioItems.map((radioItem, index) => {

 const active = selectedItem?.value === radioItem.value;

 const lastItem = index === (radioItems?.length || 1) - 1;

 return (

 <View sstyle={lastItem ? 'fg' : 'fg pd-r-8'} key={index}>

 <TouchableOpacity onPress={() => handleOnPress(radioItem)}>

 <View

 style={[

 _.values(buttonStyle),

 active ? buttonStyle.active : buttonStyle.inactive,

]}>

 <Text sstyle="fs-14 lh-20 ff-me">{radioItem.label}</Text>

 </View>

 </TouchableOpacity>

 </View>

);

 })}

 </View>

 </>

);

};

Results

Aligned consistency: one styling language kept visuals uniform across every screen.

Clearer readability: concise syntax made components easier to understand and

simplified maintenance.

Easier maintenance: removed dependency on heavy UI libraries and complex

overrides.

Faster onboarding: new developers adapted quickly thanks to the familiar Tailwind-style

syntax.

Greater flexibility: design updates were applied quickly without breaking existing

layouts.

STAR Case - Inconsistent State Propagation

Situation

Overuse of Redux for managing simple UI and navigation states caused bloated reducers,

tight coupling, and limited scalability.

Task

Solve the limitations of a Redux-only architecture by establishing a more flexible state

management model. It needed to support different state scopes without losing consistency,

clarity, or performance across the app.

Actions

To separate concerns between global, local, and transient state, I introduced React

Context for feature-specific flows and navigation parameters for transient data transfers.

To keep the team aligned, I documented the new conventions, built typed navigation

helpers, and refactored existing modules to follow the new layered structure.

Below is an example showing how a screen combines Redux, Context, and navigation

parameters to manage all states in an organized way.

1.

2.

3.

4.

5.

import { useRoute } from '@react-navigation/native';

import React, { useContext, useState } from 'react';

import { useSelector } from 'react-redux';

export const ProfileScreen = () => {

 const route = useRoute();

 const { biometricsEnabledRoute } = (route?.params || {}) as any;

 const [biometricEnabled, setBiometricEnabled] = useState(!!

biometricsEnabledRoute);

 const context = useContext(...);

 const profile = useselector(...)

 const handleOnPressBiometrics = async () => {

 const newValue = !biometricEnabled;

 setBiometricEnabled(newValue);

 biometrics.toggle(newValue);

 if (!newValue) return;

 modal.warning({

 context,

 ...

 description: `Hi ${profile.name}...`,

 buttons: [

 ...

],

 });

 };

 return (

 ...

);

};

Results

Cleaner architecture: unified rules removed conflicting data-handling patterns.

Faster debugging: predictable data flow simplified issue tracing across screens.

1.

2.

Improved performance: isolating state scope reduced unnecessary re-renders.

Lower maintenance cost: fewer duplicated states simplified refactors.

Stronger reliability: consistent data handling prevented broken flows during navigation.

Team alignment: shared conventions improved onboarding and collaboration between

developers.

3.

4.

5.

6.

💵 Safra

Staff Frontend Engineer - AngularJS 📅 Jun 2019 – Aug 2020

Safra Header

🌲 Project Treemap

Unavailable due to development constrained on the company internal environment.

🧱 Tech Stack

Frameworks: AngularJS, Angular 9

Languages: TypeScript, JavaScript, HTML5, CSS3, SASS

Build Tools: Webpack, npm, Node.js

CI/CD: Jenkins, Git, Custom Git Workflow

Testing: Jasmine, Karma

UI Tools: Sass, KSS

Version Control: Git (internal repository)

Project Management: Jira, Confluence

🌟 STAR Cases

STAR Case - Multiple Teams Conflicts Under Tight Deadline

Situation

The project faced an aggressive 6-month deadline with 30+ frontend engineers working

across multiple projects (cards, ATM, onboarding, payments, profile). Each team maintained a

separate codebase, yet all merged into a single release pipeline. The compressed schedule

and overlapping workstreams created a chaotic environment of frequent overwrites, lost

commits, unstable builds, and ongoing issues during quality assurance.

Task

Define and implement a reliable integration and release model to restore environment

stability. The goal was to reduce merge conflicts, prevent code loss, and ensure predictable

releases while meeting the delivery deadline.

Actions

I started by breaking down the entire release process from the top. To understand why the

builds kept failing, I reverse engineered the pipeline, tracing it from the App Store

approval steps all the way back to the developer commits.

Once I mapped the flow, I updated the Jenkins configuration to build only from predefined

tags. Since there was no versioning strategy in place, I introduced a manual semantic release

process that triggered deployments only when a new tag was created.

•

•

•

•

•

•

•

•

With the pipeline under control, I defined a new branching model inspired by GitHub Flow

and GitFlow, extended to handle multiple environments.

After defining the model, I aligned with the team leads about the new process, detailing how

developers should create branches, tag releases, and merge safely into the shared pipeline.

Below is a simplified diagram of the branching and release model that illustrates how the pipeline

operated after those changes.

Results

Controlled rollbacks: release tags and environment branches allowed instant

restoration of any previous version.

Consistent environments: cascading rebases kept develop, homologation, and

preproduction branches synchronized with master after each release.

Cross-team stability: the new model reduced merge conflicts from around 15 per

release down to 2 on average.

Developer safety: isolated branches protected individual work and the shared pipeline.

Eliminated QA instability: fixed tags and controlled release candidates made every

change traceable, ensuring consistent validation across environments.

Predictable releases: flexible release candidates included only main commits and

approved features, ensuring stable builds for users and quality assurance.

STAR Case - Inconsistent UI Across Teams

Situation

Under tight deadlines, each squad had its own designer and developers building features with

no alignment across teams. Without a shared design source or centralized library, teams

recreated the same components in different ways, leading to duplicated code, inconsistent

visuals, and a fragmented user experience across the app.

Task

Bring visual and structural consistency back to the product by creating a single source of

truth for UI. I needed to align all squads around one shared component library that could live

inside the company restricted environment and be easy for every team to adopt without

slowing delivery.

Action

I joined the design squad to understand the centralized work they were creating and took

responsibility for bridging communication between designers and developers. After

assessing each team’s workflow, I determined that the most effective way to standardize the UI

was by creating a framework-agnostic, ready-to-use CSS component library instead of

AngularJS components, allowing squads to use it in any context. I built the library with Sass for

consistent styling and used KSS to document it with clear visual component references. To

distribute it within the restricted network, I set up a bare Git repository on a shared internal

resource, enabling all squads to pull updates directly into their projects.

1.

2.

3.

4.

5.

6.

Results

Wide adoption achieved: the system’s simplicity and open contribution model enabled

all squads to adopt it within weeks.

Design drift eliminated: shared components and standardized styling unified behaviors

and visuals across every module.

Library stability proven: the architecture endured three facelifts and two complete

redesigns without major refactoring.

Documentation standardized: the KSS guide became the single reference for all

squads and defined future documentation practices.

1.

2.

3.

4.

💵 Itaú

Frontend Engineer - Angular 2+ | 📅 Mar 2018 - Jun 2019

Itau Header

🌲 Project Treemap

Unavailable due to development constrained on the company internal environment.

🧱 Tech Stack

Accessibility: Axe, Screen Reader APIs, WCAG AA

Build Tools: Node.js, npm, semantic-release, Webpack

CI/CD: Git, Husky, JFrog Artifactory

Collaboration: Cross-squad integration, Shared Knowledge Base

Documentation: Confluence, Internal Design System Docs

Frameworks: Angular 7, AngularJS

Languages: CSS3, HTML5, JavaScript, TypeScript, SASS

Project Management: Confluence, Jira

Testing: Headless Chrome, Jasmine, Jest, Karma

UI Tools: Design Tokens, KSS, Mixins, SASS Utilities, Storybook

Version Control: Git (multi-repo architecture, company repository)

🌟 STAR Cases

STAR Case - No compliance with WCAG Standards

Situation

With more than 90 million users and about 24% of the population living with some form of

disability, a significant number of customers faced barriers using the app. The company had

begun enforcing WCAG accessibility standards across all digital products.

Task

As part of a cross-squad design system team, I was responsible for ensuring the new Angular

7 components complied with WCAG 2AA accessibility standards. The team was tasked to:

1. Integrate accessibility requirements into the design system’s development workflow.

2. Validate accessibility with real users, supported by a dedicated QA subteam composed of

people with disabilities.

3. Guide external consultancy to accelerate implementation and ensure technical alignment

with accessibility best practices.

•

•

•

•

•

•

•

•

•

•

•

Action

The effort began by contracting and onboarding a 7-person consultancy team, integrating

them into our workflow and setting up their environments to match the internal CI process.

With the team established, collaboration expanded to the QA group of testers with

disabilities, whose feedback guided accessibility refinements in real use cases. As the work

evolved, our squad became the bridge between design and engineering, revisiting UI

patterns and adjusting layouts, color palettes, and interaction models to meet WCAG 2AA

standards. The development phase introduced ARIA roles, keyboard navigation, and color-

contrast adjustments, ensuring full compatibility with NVDA, VoiceOver, and TalkBack. This

transformed accessibility from a patch into a core design system feature. To close the cycle,

the new practices were documented and distributed so future squads could maintain the same

accessibility standards.

Results

Achieved WCAG 2AA compliance: all components were validated through real-user

testing with NVDA, VoiceOver, and TalkBack.

Enabled inclusive access: more than 90 million users with gained full accessibility

across the company digital products.

Standardized accessibility by design: accessibility rules became part of the design

system architecture, not a post-release addition.

Ensured long-term scalability: documented practices and reusable patterns preserved

accessibility compliance in all future products.

Unified multidisciplinary collaboration: design, engineering, QA, and consultancy teams

worked under a shared accessibility effort.

1.

2.

3.

4.

5.

🎓 UEPG

Full stack Researcher - Java 📅 Mar 2015 to Aug 2017

UEPG Header

🌲 Project Treemap

Unavailable due to research environment constraints.

🧱 Tech Stack

Architecture: Service-Oriented Architecture (SOA)

Build Tools: Ant, Eclipse IDE

Database: Firebird, MySQL

•

•

•

Documentation: Internal Technical Guides, UML Models

Environment: Windows,Debian Linux, VirtualBox

Frameworks: Apache Struts, FrameMK, JUnit

Integration: REST, SOAP, WSDL

Languages: CSS, HTML, Java, JSP, SQL, XML

Modeling: UML (Use Case, Class, Package, Activity Diagrams)

Testing: JUnit (Unit and Persistence Layer Tests)

Version Control: Manual dependency management, SVN

Web Services: REST APIs, SOAP/WSDL for ERP Integration

🌟 STAR Cases

STAR Case - Fragmented Research Environment

Situation

The framework ran on a legacy Java Struts architecture with complex dependencies,

Firebird databases, and distributed tools. Each contributor manually configured

environments by himself, resulting in version drift, failed builds, and long onboarding

times.

Task

Design a reproducible environment that unified all dependencies, databases, tools, JUnit

test automation, and SOA integration workflows across all machines.

Action

Packaged the full research stack into a virtual machine image containing Java SDK, Apache

Struts, Ant, JUnit, Firebird, and SVN integration. Embedded startup scripts to initialize the

database, compile the framework, and deploy local web services. Consolidated all UML

diagrams, documents, and guides inside the VM for self-contained reproducibility.

Results

Reduced setup time: full onboarding decreased from weeks to one hour.

Standardized research execution: all contributors operated within a consistent and

controlled environment.

Unified dependencies and tooling: all components integrated into a single virtual

machine image.

•

•

•

•

•

•

•

•

•

1.

2.

3.

Preserved research continuity: versioned VM snapshots and SVN references maintained

long-term environment parity.

☂️ Virtual

Full-stack Engineer - Delphi / MEAN 📅 May 2013 – Mar 2015

Virtual Header

🌲 Project Treemap

Unavailable due to development constrained on the company internal environment.

🧱 Tech Stack

Languages: Delphi, JavaScript, TypeScript, SQL, HTML

Frontend: AngularJS

Backend: Node.js

4.

•

•

•

Databases: MongoDB, Microsoft SQL Server

Reporting: QuickReport, Dephi

Project Management: Scrum

🌟 STAR Cases

STAR Case - Code Ossification

Situation

The insurance management system relied on a Delphi-based PDF parser that converted files

into plain text and navigated fields using company-made custom parse functions.

For more than a decade, the team maintained this fragile approach, a clear case of code

ossification that prevented simpler and more maintainable solutions like regular expressions

from being adopted.

Task

Enable reliable automated extraction of data without breaking existing parsers.

Action

After a few months adjusting the parser through the company’s custom functions, I

proposed introducing regular expressions to simplify data extraction. The idea faced initial

resistance due to years of code ossification and comfort with the old cursor logic.

After repeated attempts and personal insistence, I finally got approval to add the regex

function to the core parser. Once integrated, it quickly proved its value, successfully parsing

complex document sequences that previously required extensive manual position tracking.

With those results, I was asked to help the team on writing and maintaining regex-based

extraction rules for other document schemas, formalizing pattern usage as the new

standard for PDF parsing within the system.

Results

Stabilized PDF extraction logic: improved fragile custom parsing with regex-driven

matching, eliminating data loss from manual offsets.

Reduced maintenance overhead: legacy functions were gradually deprecated,

simplifying debugging and onboarding for new developers.

Improved document coverage: the new regex parser handled multiple schema

variations that were previously unsupported by cursor logic.

Enabled team-wide adoption: after internal training, regex usage became a standard

practice for all document parsing routines.

•

•

•

1.

2.

3.

4.

Transformed legacy mindset: the function broke a decade of code ossification,

proving modernization could happen without risking stability.

5.

	Summary
	📌 Professional Summary
	A journey of a thousand miles begins with a single step

	🎯 Career Objective
	⚖️ Professional Values
	🤝 Transparency and communication
	⏳ Process
	🤩 User impact first
	🏠 Ownership mindset
	🍎 Healthy code
	🏰 Resilient code

	🖼️ Personal Interests
	🔬 Project Case Studies
	🧠 Neurogram
	Senior Frontend Engineer - React.js 📅 Nov 2023 - Nov 2024

	🌲 Project Treemap
	🧱 Tech Stack

	🌟 STAR Cases
	STAR Case - Fragmented codebase
	Situation
	Task
	Actions
	Results

	STAR Case - Unreliable Deployments
	Situation
	Task
	Actions
	Results

	STAR Case - Code duplication
	Situation
	Task
	Actions
	Results

	🍷 X-Team
	Senior Frontend Engineer - React Native 📅 Sep 2022 - Jul 2023

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Performance Bottleneck
	Situation
	Task
	Actions
	Results

	STAR Case - Unstructured Backend Responses
	Situation
	Task
	Actions
	Results

	STAR Case - Missing Internationalization
	Situation
	Task
	Actions
	Results

	🛍️ Riachuelo
	Senior Frontend Engineer - React Native 📅 Aug 2020 - Aug 2022

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Insecure Client-Server Communication
	Situation
	Task
	Actions
	Results

	STAR Case - Design System Drift
	Situation
	Task
	Actions
	Results

	STAR Case - Inconsistent State Propagation
	Situation
	Task
	Actions
	Results

	💵 Safra
	Staff Frontend Engineer - AngularJS 📅 Jun 2019 – Aug 2020

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Multiple Teams Conflicts Under Tight Deadline
	Situation
	Task
	Actions
	Results

	STAR Case - Inconsistent UI Across Teams
	Situation
	Task
	Action
	Results

	💵 Itaú
	Frontend Engineer - Angular 2+ | 📅 Mar 2018 - Jun 2019

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - No compliance with WCAG Standards
	Situation
	Task
	Action
	Results

	🎓 UEPG
	Full stack Researcher - Java 📅 Mar 2015 to Aug 2017

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Fragmented Research Environment
	Situation
	Task
	Action
	Results

	☂️ Virtual
	Full-stack Engineer - Delphi / MEAN 📅 May 2013 – Mar 2015

	🌲 Project Treemap
	🧱 Tech Stack
	🌟 STAR Cases
	STAR Case - Code Ossification
	Situation
	Task
	Action
	Results

